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CHAPTER I
INTRODUCTION

A. Purpose of Investigation

Light propagating through the atmosphere undergoes bending due
to variations in the index of refraction . Whe n this bending is
uniform one witnesses phenomena such as mirages [1] and the apparent
flattening of the sun as it approaches the hori zon. If the index of
reflection is fluctuating randomly the phase and ampl itude of the
l ight are perturbed in a random manner. Phase fluctuations give rise

• to an uncertainty in the location of a radiating body [2]. This
behavior is exempl i fied by the “dancing” or “quivering” of the image
of a star as seen through a tel escope . Intensity fluctuations , or
scintillations [3] as they are commonly called , are typified by the
twinkling of stars or distant headlights.

By examining the temporal power spectrum of the scintillations
one can discern important properties of the medium through which the
light has propagated. With the ready availability of the laser it
is therefore natural that we be interested in the temporal scintil-
lation spectrum of a laser beam.

A real izabl e laser beam may not always have the perfect prop-
erties which analytical studies assume . The need therefore arises
to determine the effect upon its scintillation spectrum of a laser
beam containing a certain amount of deterministic degradation ,
e.g., a beam partially blocked by dirt specks. We are concerned
herein wi th the temporal scintillation spectrum of just such a
~dirty~ beam.

Within this work a contemporary technique currently appearing
in the literature is employed in deriving a very general but compact
mathematical expression for the scintillation spectrum. This ex-
pression, which is restricted to the weak turbulence regime, is
then appl ied to the analysis of several situations of great interest.

• Specifically the analysis is directed toward description of the
• effects of such phenomena as localized turbulence , off-axis de-
• tectors, and the use of a laser beam which is blemished in a

• deterministic sense. Spectra obtained under these conditions will
be shown to provide additi onal information about the propagation
medium .

1 
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• This study was motivated by a desi re to provide theoretical
- . support for experimentally obtained scintillation spectra. As

i llustra ted in Figure 1 , these spectra were digitally calculated
from data obtained by propagating a laser beam over an approximately
one kilometer path between two aircraft flying abreast. The spectra
thus generated displ ayed a number of pecularities and in the course
of the effort to put this behavior on a firm theoretical basis a
number of heretofor unexplored phenomena were encountered.

~~~~- 1Km -
~~~~

Figure 1--Sketch of experimental situation.

The principa l contribution of this effort lies in the develop-
ment of a simpl ified formula for the temporal scintillation spectrum
and its application to several important configurations which are
commonly encountered in practical situations . The probl em attacked

• in this dissertation is therefore a theoretical description of the
temporal scinti llation spectrum of a “dirty” laser beam.

The general formalism presented here is also applicabl e to
arbi trary transmitter and receiver shapes such as the beam transmitted
from an unstabl e resonator or a Cassegrain telescope receiver or
transmitter .

2
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B. Perspecti ve

Whenever an electromagnetic wave is propagated through the at-
mosphere it is perturbed in a random ma~iner. For radio frequency

• waves this corruption is due to index of refraction variations caused
• by humidity fluctuations wi thin the atmosphere. At optical fre-

quencies the index of refraction variations are due primarily to
temperature fluctuations. Both humidity and temperature fluctu-
ations are caused directly or indirectly by radiant heating of the
earth and convective heating of the atmosphere in conjunction with
wind shears. The research effort described herein in aimed primari ly

• at predicting the effects of turbulent index fluctuations at optica l
frequencies but may be generalized to longer wavelengths.

• The refractive index fiel d is composed of randomly arrayed
eddies of various sizes and indices of refraction. These eddies
have sizes £ such that £~ < £ < L0 where £0 and L0 are respectively
the inner and outer scales of turbulence . Mechanical energy is in-
jected by wi nd shears into the large scale sizes which then break

• into smaller and smaller eddies through the phenomena of vortex
stretching[89]. The energy thus cascades Into smaller and smaller
scale sizes unti l it is dissipated in the form of heat at scale sizes
on the order of the inner scale, £~ .

If one assumes that the turbulent eddies are blown en masse
through the wave transverse to the propagation path, then what will
be observed at the receiver plane is simply the moving diffraction
patterns of eddies of various sizes and locations.

For short propagation paths (L < R.~/A where A is the free-space
wavelength) the incident wave undergoes perturbations to its phase
only. As the path length is increased , ampl itude fluctuations are
also introduced . When viewed by a square-law detector (e.g., the
eye or a photomulti plier) the resultant power (irradiance) f1uctu~ations are commonly referred to as scinti l lation.

.By using a detector (photomultiplier) to measure the variance
of the irradiance of a perturbed wavefront it is noticed that to
a point, as the path l ength or turbulance level increases, so does
the -irradiance variance. However for very strong turbulence and/or

• long path lengths the variance is seen to peak or saturate [4],[5]
and to even decrease slightly [6] . This effect has attracted much
attention partly because people intuitively expected the variance
to increase wi thout limit.

Wi thin the weai: turbulence regime (or for moderate propagation
lengths) the effects of Index inhomogeneities can be closely apuroxi-
mated by the linear superposition of the interactions of the coherent
(unperturbed) wave wi th turbulent eddies of all sizes at all locations3
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between transmitter and receiver. This is a single scattering model .
Strong turbulence gives rise to multiple scatterings wh ich man ifest
themselves as the aforementioned saturation phenomenon. We shal l be
concerned herein principally with the weak turbulence model. However
where appropriate modifications will be pointed out which enable
generalization to the strong turbulence domain.

The temporal spectrum of the Irradiance fluctuations could easily
have been measured instead of the variance of irradiance . It is just
this power spectrum in which we are interested.

C. Discussion of Previous Work

Since primordial man first turned his gaze toward the night-time• sky he has been intrigued by the phenomenon of scintillation . (Recall
the nursery rhyme which goes “Twinkle, twinkle, l ittle star .... “) It
seems natural then, that scintillation be a topic of research from
earliest times. Further, it is reasonable that the study of scintil-
lation have its roots in one of the oldest sciences, astronomy [7]. In
more recent times scintillation has been an important device for- passive
remote sensing, for example determining the velocity of the inter-
planetary solar wind [8,9], the ionospheric drift [10,11] or terrestrial
wind [12]. With the advent of the laser, scintilla tion has become
important within the realms of optical communication [13,14] and active
remote sensing [15,16,17,18,19].

One of the classical mathematical tools wi th which scintillation
is predicted, is known as the Method of Smooth Perturbations [20].
This technique, popularized b~r Tatarskl [20], hypothesizes an Iterativesolution (for weak turbulence) to the scalar wave equation for the
natu’al logarithm of the field. A great many authors have employed
this method in the study of (among other phenomena) scintillation .

The simplest problem related to scintilla tion which has been
attacked with the Method of Smooth Perturbations is the calculation of
the log-amplitude variance. This problem has been solved for plane
wave sources [21], spherical wave sources [22,23], and the more complex
finite beam (viz. gaussian beam) sources [24,25].

Another topic routinely of Interest Is the spatial spectrum (or its
inverse Fourier transform, the covariance) of the log-ampl itude for
plane [26], spherical [22], and finite beam wave sources [24].

The next step in complexity is the calculation of temporal spectra
of, for example, angle of arrival [27,28,29], phase [30,3l ,32]:~ phasedifference [31,33,34] or irradiance [35,36,37,38,39]. The ter~oralscintillation spectrum for plane waves was examined by Tatarski[36].
An interesting feature of his development was that it accounted for a
finite receiver aperture. However, since the true plane wave is merely

4
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• a mathematical abstraction, his analysis is applicable to only a small
class of problems [40].

An extension of Tatarski ’s method to the calculation of the spherl-
cal wave temporal scintillation spectrum was provided by C14fford [35].
In his evaluation he developed expressions for the asymptot~c behaviorof both plane and spherical waves. Solution of the spherical wave
problem represented a significant advance in the theory because the
spherical wave could be closely approximated in practice, thus allowing
experimental verification .

• The calculation of the temporal scintillation spectrum of a
practically realizable source (the laser) was provided by Ishimaru [39]
and later by Mironov, et al [37]. Both authors presented numerically

• calcul ated spectra for a variety of laser beam configurations.

The Method of Smooth Perturbations, as it has been used in the
past Is’ however~ extremely cumbersome when applied to an extended source.
Its use in the analysis of each of the aforementioned problems necessi-

• tated solving the wave equation for a particular source field (plane,
spherical , gaussian, etc.).

A more modern approach is to not solve the wave equation for the
field directly, but rather for the Green’s functi on for the particular
propagation path configuration. The receiver plane field is obtained
merely by convolving the Green’s function with the incident field.
This extension of the Green’s function technique to propagation within
an inhomogeneous medium is commonly referred to as the Extended Huygens-
Fresnel Principle [41]. It is perhaps paradoxical that the Green ’s
function technique (for propagation wi thin a homogeneous medium) pre-
dates the Method of Smooth Perturbations [42].

The study with which we are concerned employs elements of both
the classical (Method of Smooth Perturbations) and the modern (Extended
Huygens—Fresnel Principle) techniques. Virtues of each method are
exploited to obtain an expression for the temporal scintillation spec-
trum of an arbitrary source field. This formula is much simpler yet
more general than those developed by Tatarski, Clifford, or Ishimaru.
In fact their results are special cases of our formula. This study
extends the results of Ishimaru and Mironov in that it accounts for an
arbitrary extended source and an arbitrarily located extended receiver
aperture.

• A portion of our analysis deals wi th the effects of extended• recei ver apertures and the ensuing “aperture averagi ng ”. This topic
has also been treated theoretically by Fried, et al (43] and experi-
mentally by Hcmstad, et al [44] and Dum phy and Kerr [45].

The evaluation of the temporal scintillation spectrum for a
gaussian beam with an off-axis detector represents a significant

5
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- dealt wi th axial detectors.

Finally, use of our formula in the modeling of a dirty laser beam
and the subsequent evaluation of the scintil lation spectrum provid es

• an important description of a situation which is universally encounter-
ed experimentally, but rarely treated even qualitatively. The techni-
ques appl ied to the model ing of a dirty laser beam could also be
applied to the prediction of the scintillation spectrum of a laser
with cassegrain opti cs.

D. Outl ine of Effort

Chapter II provides the bulk of the background plus the mathe-
matical foundation for the remainder of the research effort. The
development relies upon the extension of the familiar Huygens-Fresnel
diffraction integral to the problem of propagation within an inhomo-

• geneous medium. Use of the Extended Huygens-Fresnel Integral results
• in an expression for the temporal scintillation spectrum for an arbi-

trary source field in terms of the generalized spatio-temporal second
order statistical moments of a spherical wave. These moments which
are functi ons of separati ons wi thin the transmi tter plane , the receiver
plane, and time are then derived . Wi th some easily j ustified approxi-
mations the expression for the spectrum undergoes tremendous simplifi-
cation. The final expression, which is very compact, has some very
interesting interpretations. A description of the final expression in
the context of a phase grating model of the atmosphere completes this
chapter.

The formula for the scintillation spectrum derived in Chapter II
is appl ied in Chapter III to the case of a clean gaussian beam source.
Results of the analysis are in terms of analytic formulae for the
asymptotes of the spectrum under a variety of conditions . Such con-
ditions include the case in which the detector is off-axis to the laser
beam, as il lustrated in Figure 2, and the case in whi ch the turbulence
is localized. In addi tion to asymptotic resul ts, numerical ly calcu-
lated spectra are presented for typical instances.

In Chapter IV the “dirty” laser beam is studied . The dirty beam
is modeled as arising from the propagation of an initially unperturbed
laser beam through a window containing an imperfection and thence Into
the atmosphere. This situation is illustrated in Figure 3. The window
imperfection is modeled as an axially located spot which slightly
shifts the phase of the incident beam. It is demonstrated that this
specifi c arrangement di splays characteristics of a much more general
situation. Wi thin the development the phase object Is approximated
by a truncated series of functions involving Gaussian-Hermite polyno-
mials. These functions are of particular importance because they
closely approximate the modes of a laser and because they are exact

6
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(within the paraxial approximation) eigenfunctions of the free space
wave operator. Because the polynomial series is truncated, a procedure
is demonstrated which optimizes the approximation .

-
~ The expression resulting from the modeling of a dirty laser beam

is then numerically evaluated for a variety of situations. As a result
of the analysis, the scintillation spectrum is shown to exhibit very
interesting and informative low frequency behavior.

The sumary and conclusions are contained In Chapter V. Sug-
gestions are provided for future analytical as well as experimentalefforts .

9
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CHAPTER II

DERIVATION OF FUNDAMENTA L FORMULA

-: A. Introduction

This chapter is devoted to the derivation of an expression for
the temporal scintillation spectrum of an arbitrary incident field.
The final fo wula obtained is the foundation on which the remainder
of the analysis rests .

Within the derivation use is made of the Extended Huygens-Fresnel
• • principle and the weak turbulence approximation. The final resul t i s

a very simple and physically interpretable formula for the tempora l
• scintillation spectrum of an arbitrary source field. This formula,

which requires knowledge of the free-space receiver-plane field of
an unspecified extended source , also accounts for an extended receiver.

In Section B we employ the Extended Huygens-Fresnel Integral to
develop an expression for the scintillation spectrum in terms of the
second order spatio—~temporal statistical moments of spherical waves.These moments, (log-amplitude covariances , phase-log-amplitude cross
covar iances , and wave s truc ture func tions) whi ch are func tions of
separation in the transmitter plane , separation in the receiver plane ,
and separation in time, are derived in Section C by use of the method
of smooth perturbations.

The results of the two previous sections are combined in Section D.
Use is then made (and justifi ed) of the weak turbulence approximati on.
By rearranging terms of the resulting formula we obtain a series of
diffraction integrals which are then performed symbolical ly to yield
the desired expression for the scintillation spectrum.

In Section E the var ious components of the final formu l a are
interpreted in the context of a phase screen model of the atmospheric
turbul ence.

F ina l ly Sec tion F cons i sts of a d i scuss ion and summary of the
chapter.

I
10
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B. Derivation of Genera l Expression
for Scintillation Spectrum

This section is devoted to devel oping an expression for the tem-
poral scintillation spectrum in terms of the second order statistical
moments of a spherical wave. The deri vation is based upon use of the
Extended Huygens-Fresnel integra l and employs standard mathematical
procedures currently employed in the literature .

We are interested in the situation in which an arbitrary unper-
turbed source field is incident (at z=O) upon a region (z>O) contain-
ing randomly varying index of refraction inhomogeneitles. The field
then propagates through the inhomogeneous medium a distance L to a
receiver plane in which is located an arbitrary detector. To deter-
mine the receiver pl ane fields we propose to solve the scalar wave
equation

[v 2 + k2n2(~ )]E(~) = 0 (1)

where the index of refrac tion n is a random function of space and k
— is the free-space wavenumber (k = 2w/A). By defining a generalized

Green ’s function such that

[V 2 + k2n2(R)]G(R,R’) = - 4~r cs ( I~-ff I ) (2)

it is easily shown (see Appendix A)[41] that the receiver ~1ane fieldmay be expressed approximately as

E(~’) = ~~ f G(~,~’)E(~)d~ (3)

where the surface integration is carried out over the plane z=O and
L is the distance between transmitter and receiver planes . In
Equation (3) we have denoted the three-dimensional vector by an upper

• case letter and the two dimensional vector by a lower case letter.
We shall attempt to retain th is convention throughout the remainder
of this work. Using the explicit expression for the generalized
Green ’s function (also discussed in Appendix A) Equation (3) may be
wri tten

— i k  — i kL(~1,i9) + *(~1;~9;t) —E(rj ,t) = j~ J dr1 e E(r1) (4) 
•

11
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where L is the geometrical (free space)_distance between the point ~
in the transmitter plane and the point r’ in the receiver plane and

* is a complex phase perturbation to the field of a spherical wave.The variables of interest are illustrated in Figure 4.

- 
,,
,,
,
J/ L

• r t R II zzO

J(F ,F~) z  I~—~
,I

Figure 4--Variables appearing in Huygens-Fresnel
formula.

The preceding discussion aimed at solution of the wave equation
within an inhomogeneous medium encompasses the method commonly referred
to as the Extended Huygens-Fresnel technique. This topic is discussed
more fully in Appendix A.

Using Equation (4) we express the irradiance at ~~
‘ as

k 2 — 
ik[L(r1,rj)-L(r2,rj)]

IE (Fj;t1)1
2 (sr) Jdri Jdr2 e

sc~1;~j;t1) + s*G~2;9t i) — —x e E(r 1 )E*(r2)
(5)

and the total received power as

12
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P(t 1) = J d~ w(~j ) I(9;t1) (6)

where w is the receiver pupil function defined as

11; ~F’J < D/2
w (ij ) =~~ 

1 — 
(7)

L°~ 
Ir~I > D/2

and D is the diameter of the receiver aperture. We have assumed the
right hand side of Equation (6) to be divided by unity impedance so
that the power, P, does indeed have the units of watts. Now under
the assumption of temporal (wide sense) stationarity, the temporal
scintilla tion spectrum is given by

S~(~ ) = d r C~(t)e~~)t (8) —

where C is the power covariance,

C~(~) = <[P(t 1 ) — <P(t1)>][P(t2) - <P(t2)>]> (9)

r= t1 - t2, and the angular brackets denote the ensemble average.

Equations (6), (8), and (9) yield

S~(w) = J dr e
)T 

Jd~jw (~j) Jd~~w(~~) C1(~ -~~~;t) (10)

where C1 is the covar iance of irradiance defined as

C1(F~—i~~;T) 
= <[I(i~1;t1) — <I(9;t1)>][I(~~;t2) - <I(F~;t2)>]>

(11-a)

or more simply

Ci(F1_
~~;r) = <I(i9;tj)J(~~;t2)> - <I(fl;t1)><I(~~;t2)>

(11-b)

13
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Note that we have indicated the covariance of irradiance to be simul-
taneously homogeneous in the receiver plane separation , r~-r~, andstationary in time, r. This assumption will be justified later in
this chapter.

Use will now be made of Equation (5) to calculate the irradiance cor-
relation and mean irradiance as required in Equation (11-b).

The mean irradiance from Equation (2) is simply

— k 2 ik[L(i~1,~~) - L(~ 2~F~) ]

• 
<I(r~;t1)> = (~

_
~
) f

~~r 1 fdr2 e

x E( i 1 )E*(F2) <e
c> (12)

-
* where we have defined

= 

~
(
~i;~1;t 1) + **(~2;j9;ti) . (13-a )

If we define 
~ 

= x + iS , where S is the phase and X is conrionly cal led
the log-ampl itude then ~ is given by

C = X (~1;~~;t1) + iS(~ 1;~Fj ;t1) + x(~~2 ;~~j ; t 1 ) — iS(~F2;~Fj;t1)

The notation in the derivati on to follow is greatly simplified by
adopting the convention

c = (x111 + x 21 1) + i (S 111 - S211) (13-c)

where the subscr ipts refer to res pectivel y a po int, 
~ 

or 
~2’ 

in th~transm itter plane , a point, rj or r~, in the receiver plane , and atime, t1 or t2.
Under the assumption that the complex phase perturbation is normally
distributed [46] we have [47]

-au + L~e (14)

14
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where •~~~ and are respectively the variance and mean of r . The
mean is

= 2<X> . (15-a)

It is easily demonstrated by conservation of energy arguments [48]
that the mean must be the negative of the variance ;

= 2<X> = —2C
~
(O;0;O) . (15—b)

• For an infinite plane wave, relation (15-b) is identically true be-
• cause the average i rradiance at a point in the receiver plane must be• independent of turbulence strength (energy must be conserved). For
• - a spherical wave propagating through weak turbulence, energy is not
• actually diffracted out of the beam but merely instantaneously redis-

tributed . Therefore, for weak turbulence, the mean irradiance of a
spherical wave should also be independent of turbulence strength.

• The variance of C is given by

= < [(x111 - <x> + X2fl - <x>) + i(S111 -

= 2 C
~
(O;0;O) + 2 C

~
(
~

1_
~2

;O;o) (16-a)

- 14<x>< (5111 - S211)> + 12< (x111 + x211 ) ( S 111 - S211 )>

- D5(~1_~2;Q;Q) (16-b)

where Ds Is the phase structure function defined as

= 2[C5(O;O;O) - C5(~;~ ’;t)] , (16-c)

and we have assumed simultaneous homogeneity in both_the transmitter
plane separation , p, and receiver plane separation , p ’ , and station.
ari ty in the time separation , i. This assumption of simultaneous
homogeneity will be justified i~- a later section .

The imaginary terms on the right hand side of Equation (16-b) are
identically zero. This can be verified by interchanging the points r1and r2 in the transmitter plane thus introducing a sign change in these

15
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terms. However by isotropy, this Interchange -should produce no sign
change. Therefore the imaginary terms are zero and Equations (14),
(15—b) and (16—b) yield

-½~S(~1-~2;0;O) - ½~x(~1-~2;O;O)
= e (17-a)

or

(17—b)

where Ow is the “wave ” structure function [48] defined simply as the
sum of the phase and log-amplitude structure functions .

The mean Irradiance term 1n Equation (11-b) is then finally

<I(i9 ;t1 )><I(i~ ;t2)> = (~
E)4 Jd~1 Jdr2 JdF3 JdF4

x E(~1)E*(~2)E(~3)E*(j~4) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x e 
tOw(~1~F2;0;0) + ~~(~3-i 4;O;O)] 

(18)

Similarly the correlation of irradiance in Equation (11—b) Is
given by

<I(i~~;t1)I(i~~;t 2)> ~ (
~
) fd~1 Jd~2 fd~3 fd~4

x E(~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x ce~> (19-a)

where

(19-b)

- 

16
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By the previously adopted notation we have

= (x~11 + + + x~2~) + i (S111 — + S322 - s4~ )
(2O~.Reapplication of Equation (14) to calculate the mean of exp(q.

requires the calculation of the mean, p~, and the variance, a~, of ~.

Again , conservation of energy [48] requires that the mean be equal to
the negative of the variance;

= 4<X> = -4 C
x

(O;O;O) (21 )

The variance is

= f1 + 
~2 

+ + (22-a)

where

= <(xiii <x> + X2l l - <X> + X322 - <X> + 422 —

(22-b)

= -i8 <x’<(S iii - S211 + S322 - S422 )> (22—c)

= 12 <(xl1l~ X2ll 
+ x322 + x422)(S111 - S211 + S322 - S422)>

(22-d)

and

f4 — < (S111 - S211 + S322 — S422)2> (22—c)

The term Is easily shown to be

17 
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= ~ C~(O;O;0) + 2 Cx(~i-~2 ;O; O) + 2 Cx (i3_F4;0;0)

+ 2 CX(~
l_
~3;i9

_
~~

;tl_t2) + 2

+ 2 
~~~~~~~~~~~~~~~~ 

+ 2 C
~(~2-i4;9-~~

;t i -t2) . (23)

Term f 2 is identically zero because of stationarity and term f3 with
isotropy arguments similar to those employed previously is given by

f3 = i2[<(S~22 - S422)(x111 + x211)>

+ <(S 111 - 5211)(x322 + x422)>]
(24-a )

f3 = i4[Cxs(~i 3;~~-~~;t1 -t2) - Cxs(~2 4; i~ ;t1-t2) ]  
‘ (24-b)

where Cxs is the cross-covar iance between phase and log-ampl itude.

F Use of the identity
-

~ (a-b+c-d) 2 = (a-b) 2 + (c-d) 2 + (a-d )2

+ (b—c) 2 - (a—c) 2 - (b—d) 2 (25)

gives for the remaining term in Equation (22-a)

= -[<(Sin - s211)2> + <(
~322 - S422) 2> + <(S 111 - S422)

2>

+ < (S211 - S322) 2> - < (S111 — S322)2> - < (S211 - S422) 2>]
(26-a)

or

18 
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= -(D5(~1-~2;O;O) + 5(i3-i~4;o;0) +

+ ~~~ 2-~3;~~-~~;t1-t2) -

- s(~2-~4;~i-~~;t 1-t 2 )] (26-b)

• Finally, combining Equations (19) through (26) gives

= exp [_ w(~Fi-~2;0;0) + D1~(i3-F4;O;0)

+ Dw (
~1 4;~j-i~ ;t1-t2 ) +

— Dt.~(r1-r3;r~-r~;t1-t2) - Dw (r 2-r4 ;rj -r~;ti-t2 )]

+ 2[cx (Fl4 3 ;F14~ ;t l_t 2) + Cx(~2-~4;t9—~~;t1-t2)

+ 1 Cxs(~1 3;9-i~ ;t1-t2) - i ~~~~~~~~~~~~~~~~~~~
(27)

The optical distance term in Equations (18) and (19-a) is

i kL  i k [ L ( ~ 1~~~ ) - L(F2 1F~) + L(~3,~~ ) - L(~4,~~ ) ]  . (28-a)

Referring to Figure 5 it is seen that

i kL  = ik[(L2+1F1_F1 1
2)½ - (L2+l~2_ iiI 2)½

+ (L2+IF3_I~ I2 )½ - (L2+IF4_~~I 2)½] . (28-b)

Invoking the paraxIal ray approximation (I~i—rj I << L Y i ,j) we obtain

ikL = ~~~~ [JF1-Fj J
2 

- J”2 ”1 I + I”3 T
~2I - r4-r~) ]

19
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Figure 5—-StatIstical moment vector argianents.

We now obtain by combining Equations (10), (ii), (18), (19—a),
(27), and (28—c) the basic expression for the temporal irradlance
spectr*an;

S~(.) (2~)~ f” dr e I~~ fd~jW(~j) fd~~w(~~)

~ f~i fd~2 fd~3 Jd~4 E(~1)E*(~2)E(~3)E*(~4)

ik r~~~~,2 ~~~~ — — .2 — — .2
x e~ 1 r1 

- r2-r1 r3-r2 
- r4-r2

x ~~~~~~~~~~~~~~~~~ (29-a)

where

20
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H = exp 
~~~~ 

~CDw
(
~1-~2

;0;O) + Dw63-F4;O;0)

+ Dw (
~ l-F4 ;

~ j -~~
;T) + Dw(r2 r3;ri-r~;r)

- Di~
(r1-r3;r1-r~;r) 

- Dw(r2—r4;rj—r~ir)]

+ 2[C~(~ 1 3;~j4~ ;t) + Cx(~2-~4
;
~~
4
~
;t)

+ I CxS(~i~~3;i94~
;r) - I

- exp 
~~~~

_ (
~1-~2

;0;0) + Ow(F3
_
~4;0;O)]} . (29-b)

At this point it may appear that the spectrum Is not real as It
should be. This fear may be removed by manlpuiatinj the d~iuny_vari- 

—

ables in Eqs. (29). Specifically by Interchanging r1 and r4, r2 and r3;
r’ and r~; and setting r=-r the right hand side of Eq. (29) appears to
hive been conjugated. However since the left hand side Is uncMnged,
the spectrum S is equal to its complex conjugate, i.e., it Is real.

Equations (29) are the final result of this section. The particu—
lar form of the transfer function H is Important because at least one
group of workers [49] has found that for very strong turbulence, the
behavior of the H function is dominated by that of the structure
functions. That is, the covariances in Equation (29-b) may be neglected.
Further, under certain circumstances (on-axis point detector), approxi-
mate closed-form expressions for the wave structure functions may be
found. For this instance it would be possible to calculate the temporal
scintillation spectrum under saturation conditions. This topic seems a
fertile area for further research.

We have in this section derived an expression, In terms of the
second order moments of a spherical wave, for the temporal scintilla-
tion spectrum of an arbitrary field source. Use was made of the Extended
Huygens-Fresnel Integral which expresses the receiver plane field as
the convolution of the transmitter plane field with a Green ’s function
which has been generalized to propagation within an inhomogeneous mcd-
lum . With standard mathematical procedures and assumptions treated
extensively in the literature we arrive at the desired formula expressed
In Equations (29).

21 
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- - Finally, approximations were discussed which may enable the use
of the final expression to calculate the scintillation spectrum within
the saturation regime .

The next section is devoted to a derivation of the statistical
moments required by Equation (29).

C. Derivation of Statistical Moments

We now face the task of deriving expressions for the stati stical
functions required by Equation (29-b) of the previous section . Use
will be made of the method of smooth perturbations [2] which is some-
times referred to as the Rytov method [50,51]. Since this method is
wel l known, only the sal ient features of the derivations are presented
within this section. The expressions for the statistical moments
which are devel oped wi thin this section represent generalizations of
expressions currently ava i lable in the l iterature.

• The method of smooth perturbations relies upon the expression of
the field as [2]

V fl u,
L 

~
‘ ‘n

E = e n=0 (30-a)

where

I ..J<[~
(
~

) - <n(k)>]2>

is the R.M.S. variation in the index of refraction.

Typically y is on the order of 10 6 [41]. By inserting E from Equation
(30-a) in the scalar wave equation and equating like powers of y one
arrives at an infinite series of linear constant coefficient (Recall
that the wave eguation within an inhomogeneous medium has the variable
coefficient n2(R).) differential equations which are easily solved by
the Green’s function technique. The solutions of these differential
equations are corritionly denoted as ~ and are given by

‘p,1 = . (31)

Obviously this results In the field being given by

22 
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E = e ~~ ° . (32)

Now if we define

E = A eiS = ~~~~~ 
(33)

and danote

• LflA~ + iS~ (34)

we ~ee that

e~~~~~
A0 i - S 0) 

= e 
n~l 

~ 
(35)

The log-amplitude and phase perturbations which are denoted
respectively as

x = tn(A/A0) (36—a)

and

s1 = s-s0 (36-b)

are then to first order smallness of y;

x = Re{qi1} (37— a)

and

S1 = Im{’p1 } . (37—b )

Tatarski [52] gives for the first perturbation to the complex phase

— 
j,2 t e1kI~~ ’l E’’~~‘p1(R’) = 
~~

— I ‘ n1(~)d~ (38—a)
‘~~ ‘ I~-R’ I E(~’)V

23
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-
• - where

= n(~) - <n(~)> (38-b)

• and the integration is carried out over the scattering volume denoted
• by V. Figure 6 illustrates the variables used in Equation (38—a).

H

,

R = L z + r 1 5 ( x 1 , y 1 1 L )

z 
~~ ,y , )

= (x,y,z)

Figure 6--Green ’s function variables .

For the spherical wave fields

ikI~—~FiI ikI~’ —~j I
— 

E e  E e  
-

•

E(R) = 
— and E(R’) = ° 

— — (39)
l
~
—riI IR’ —ri l

Equation (38-a) becomes

24 
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= 

~f d~~n1(~;t)
—

‘ 
—

x 
IR - r~J e

_ 
— 

(40)
R-r1 1 I R’—RI

• where we have indicated explicitly the time dependent behavior of n1.
This time dependence arises because we assume the wind to be blowi ng
the index inhomogeneities across the propagation path.

Utilization of the paraxial approximations

— —  (x-x 1)2+(y—y 1)2
I R—r 1 1 = Z + 2z 

-

— — (xj— x 1)2+(yj —y 1)2
IR’ -r11 = I + 2L

— — 
(xj_x)2+(yj_y)2

IR’ —RJ = (L—z) + 2(I—z) (41)

al lows Equation (40) to be written

= ~_ .J d z  (~ (ti~) J dxf° dy n1(x,y z;t)

r 1(x i-x)2+(yi -Y )2 (x-x 1)2+(y-y1)2 (xj -x j )2+(yj -y j )2
x eXPIkL 2(L-z) + 2z 

- 2L

(42)

In Equation (42) the magnification terms have been approximated by the
first term of their Taylor’s series expansions:

25
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i ~~~ 
z(1-z)

To examine Equation (42) In the spatial spectral domain we make
use of the Fourier-Stieitjes expansions [53]

~ l(,c ’x+ic~y)n1(x,y,z;t) = if e 1 dv(K~~K~~z;t) (44-a)

— ~~

= JJ e 1 1 1 d.(K~~K~~L;t) (44-b)

so that

fi ~~~~~~~~~~~ d~(ic j~ c~~L;t) = F J d z  (~L.~)~~ dx J d y

i (Kjx +K~y)
x if e dv(Kj~K~~z~t)

I 1(x~-x)
2+(y~-y)

2 (x-x )2+(y-y.)2 (x’-x.)2+(y’-y )2
x exp4lk l + 

1 - 
1

~ L 2(I-z) 2z 21 
J

(45)

In Appendix B it is demonstrated that inversion of Equation (45)
yields for the spatial spectrum of the first perturbation to the corn-
plex phase;
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d~(K 1,i~2,L;t) = ik 
J
dzdv(~~Kl~ ~~K2~z;t)

x ex~fi [~;~ ~~~~~~~~~ 

()~~~ ~~2]} , (46)

• where v is the spatial spectrum of the index of refraction fluctuations.
Since the expansion of Equation (44-b) takes pl ace in the receiver
plane, the variables Ki and K2 correspond to spatial scales within the
receiver plane.

Because, by definition, the log-amplitude , x, is real-, it is
easily demonstrated [54] that (to the first order smallness in y)

F 
~x — <x> ~~~~ ~[d~(K 1

,ic ,L;t) +

da(K1,c2,L;t) , 
(47)

where F indicates the two dimensional spatial Fourier-Stielties trans—
form.

Using the_fact that the index of refraction field is real (thus
requiring d’v(-c,z;t) = dv*(K,z;t)), Equations (46) and (47) give

ijL-zJ--
L L I z

da(uc1,uc2,I;t) = kf dzdv (~~
K1~ 1K 2,z;t,Je

~j1, [!4~
;z) 

~2]. (48)

Similarly, to the first approximation, the phase fluctuation is
given by

S1 ~~~~~ ~~~~~~ [d~(K 1 ,sc2,L;t)_d~
*(_K

1 ,—ic2,L;t)]

(49)
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— which Is easily shown to give

d+(K1,K2,L;t) = kJ dzdv (~ 
~~~~ 

~ K
2~z;t)e 

~

cos[I~~;~ K2]. (50)

As Indicated in Equations (47) and (49) we have made use of the
Fourier-Stiel tjes expansions of the log-amplitude and phase;

— — ~~ i(K 1-X j~~2yj )
x(r1;r~;t) - <x> = J J e  da

~
(K l,K2,L;t) (51a)

and

— — ~~ i(K x ’+Ky ’)
S1(r1 ;r~;t) = JJ e 1 1 2 1 d+1 (K 1,K2,L;t) (5lb)

where the subscript i on the spectra denotes the source point 
~~~

.

Now the time delayed log-amplitude and phase are given by

— ~~ i(K1x~+ic2y~)x(i~ ;r~;t+r) - <x> = if e da~(K 1 K2;t+r) (52a)

and

_ — ~~ i(K 1x~+K2y~)
S1 (r~;r~;t+t) = J J e  d$~(K 1~K2;t+r) (52b)

-Introduction of Taylor’s frozen-turbulence hypothesis [55] which says
eddies do not change shape In the time it takes them to blow through
the propagation path,

n1(~,z;t+t) = n1(~-~t,z;t), (53)

where ~ = (x ,y) and V is the con~onent of the wind velocity transverse
to the propagation path, results in the spectrum of Equation (52a)
being given by

28
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da~(K1 K2~L;t+r) = kf dzdv (
~ 

‘ci’ ~~
- K2,z;t~ (54)

x ~~~~~ ~~~ e
_ I T  !. K • 

{L~
Lz )  (2]

The expression for the phase spectrum is identical except the sin
function is replaced by a cos function .

Since subsequent derivations for the desired statistical quanti-
— 

ties are all similar , we will treat explicitl y only the log-ampl itude
covariance and state without proof expressions for the phase and
phase-log-ampl itude covariances and the wave structure functions.

The log-ampl itude covariance defiBed as

~~~~~~~~~~~~~ = (55 )

<[x(~1 ;~j;t1) 
- <x>][x(~~;~~;t2) —<x>)>

is-, from Equations (5la) and (52a),

Cx(ri rj;rl r2;T) = (56)

I ~ ~~~ ~ -i~
•’

j J e if e <da
1
(K 1 ,K2,L;t)da~~(K 1,K2,L;t+T)>

With Equations (48) and (54) the covariance is
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’

-

- j K . r ’ ~ — j K ’ •r ’
= e 1 JJ e 2

2 L L L(L-z1) 2 L(L—z2) 2]x k J dz1J dz2 sin 2kz1 
K ~~~~ 2kz2 

K ’ j (57)

[i(L—z 1 ) — — -I(L—z2) — — L —

x exp I r.•~ 
- r. K- ’ + IT —

1 2 Z
2

K i ,  ~ K 2 z i ;t) dv*(~
_
~ Cj , ~~

_. c~~z2;t)>.

The assumption of wide-sense stationarity of the turbulence
provides the (statistical) orthogonality of the index spectra ex-
pressed as [56]

~~ — K2~zi ;t)dv*(~
_ 

K , ~~~~

= (L)

2

(L)
2 

dK ldK2dK jdK~~(~
_- (el - ~~

— K.j)5
(
~— I(2

_ 
~~ K~

) 
(58)

x F~~~

(

~~
_ _ K

1 I~~~2’

where F~, is the two-dimensional power spectrum of the index ofrefraction field.

Combining Equations (57) and (58), making the changes of
variables

U = L_ K ’ and u = K ’ , (59)

and performing the integrations ove r ui and u~ resul ts in
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= k2JJ d~ J dz1J dz2 (60)

1z1 (L-z1) 21 1z2(L-z2) 2x F~(K 1,K2,Iz1—z2J ) 5’I fl [ 2kL K ]  5I fl [ 2kL K

x exp i~.fv +(~i~j - ~~~~~~~~~~~~~~~~~~~ 
~~~~~ 

- 

(L-z2)

where we have dropped the primes on the spatial frequencies.

Recall that in Equation (46) the spatial frequencies correspond
to scale sizas at the receiver. However the changes of variables in
Equations (59) produce in Equation (60), spatial frequencies K cor-
responding to spatial inhomogenieties within the medium . This is an
important distinction for the subsequent manipulation of Equation

‘ (60).

We shal l now proceed to simplify the expression for the log-
ampl itude covariance. The method will make use of a sum and dif-
ference change of (path integration) variables and several order-
of-magnitude arguments.

The kappa integrand of Equation (60) is of the form

rL
J 

dz1 J dz2 G( K ,z1,z2 ), (61 )
0 0

which upon changing to sum and difference coordinates

Z + Z
Z 2 Z

1
Z P

(62)

P = z 1-z2 , z2 = z - p / 2

yields

L 
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rL ri rL/2 ~2z

J dz~J dz2 G (c,z1,z2) = J dzJ d~ G(c,z+p/2,z-p/2)
0 0 0 -2z

(63a )
rL r2(I-z)

+ I dz I d~ G(c,z+p/2, z-p/2),
~L/2 ~—2(L-z)

-
‘ where the G function is given by

- • G(ic ,z+p/2 ,z— p/2) = Fn(Kl,K2 , I Pt ) e 1TK •v

(63b)

~ 5i~ [(z+ 2-)(L-z~p/2) K2]sifl~ ~~~~~~ /2) (2]

x exp1~
. . c (z +P/ 2 Y

~
i- (z_ P/ 2) +(L_ z_ P/ 2 W i _ (L_ z +PI2 Y

~
j ] I

Using the trigonometric identity for the product of two cosines and
factoring the exponents gives for the G function

G(K ,z+p/2 ,z—p /2) = F~(K 1,K2,IPI)

x exp[i~.[f (~~
_
~~)+(i 

- 

~
) (~~-~~) + rV]} (64)

x ~{cos[P”~
2z) ~2] -cos K2 - 

~~ PIC )
2]}

x e ~ r1 2 -(r j +rj )]

For an isotropic field , fluctuations separated a distance p
are correlated only by index of refraction inhomogenleties of size
£ such that [57]

(65)

Since the dimension £ corresponds to a spatIal frequency
t = 2w/ K,
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• the two dimensional index of refraction spectrum F,, Is markedly
different from zero only for

p ~ 2w/’ (66a )

- 
- or

~ 2w . (66b )

Within the region of significance of F~ the argument of the
first  cos function in Equation (64) is

~ 
(L-2z) (2 < A(l-22/ L)K i~ A/L (67 )

where £~ is the inner scale of turbulence (typically £0’~.l0
3-lO 2m).

Because the wa velength at optical frequencies P~’lO-6m) is much smallerthan the inner scale, we may let

(L-2z 1 K2]% 1. (68)

Al so within the aforementioned region

~~~~~~~~~~~~~~~ I-~. ~~~~~~~~~~~~~ 
(69)

If we restrict our attention to lateral distances from the propa-
gatIon axis much smaller than the range — the paraxial approximation

L has al ready required this - we can allow

e “ 
~~l . (70)-

With the preceding approximations we now obtain for the In-
tegrand of Equation (63a),

G(K ,z+p/2 , z— p/2) = F~(K1,c2 ,IPI)sin 2 [z~1_z ,~2 —

x ex~fi~ 
. [f ~~~~ + 

(i 
- f) ~~~~ + r~

} 
• (71)
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Finally, the log—emplitude covariance in Equation (60) Is given
by

cx(~i j ;~1~~~
;t) = 2k2L2 Jf d {f dz J d Ø  G~

(sc ,z+pI/2,z_pL/2)

r2(l Z) 1
+ dz I dp Gx(K,z+pL/2,Z_pL/2)IJl /2 JO

(72-a)

where

Gx = F~ (K 1 
,K 2 ,p L) sin 2 [z(i_z 1i~ , 2 - L~~p)

2 ]
x exp{ i~ [z(~ j_ ~~ ) + ( 1_z )(~1

_
~~) + t~~] }  (72-b)

and we have replaced the z variable of integration by z/L.

. It is easily demonstrated, using arguments identical to the pre-
ceding , that the phase covariance and phase-log-ampl itude cross-
covariance are given respectively by

— — — — 22 ~ _ (l/2 2z
C5(rj .rj;rj.r~;r) = 2k L JIdK 

~ 
dz J dp GS(K ,z+pL/2,z—pL/2)

r i ~2 (1 .z) )
+ I dz I dp G5(K,z+pL/2,z—pL/2)L ‘ - -

~l/2 JO J (73-a)

where

G5 = F~(K 1,-K2,pI) cos
2 
[z~~

zL 
K 

- 
L(~~)

2]

x exp{ i~ [z(~9-~~) + (l-z)(~~-~~
) + t~ ] i (73-b) - -

and
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~~~~~~~~~~~~~~~~ 
= k2L2JJ d~

11/2 2z
t1~ 

dz J dp

1 2(1—z) .1
+ 

J 

dz J dp G
~s(c

,z+pL/2,z-pL/2) 
~

1/2 0 J
(74-a)

where

Gxs F~ (K 1
uc2,PI)s1n [z

1_z 1 
K - 

L(K~k!]

x exp(i~ [Z(~j ..~~) + (l-z)(
~i

_i
~j
) + t~J} . (74-b)

The wave structure function defined as

= 2(Cx(O;O;O) + C5(O;O;O)

— Cx(Pi ;p2;r) 
— C5(p 1 ;p2;r)] (75)

is from Equati ons (72) and (73),

= 4k2L2ff d~

( 1/2 2z
x jJ dz dp G~g(K,Z+pL/2,z-pI/2)

1 2(l-z) 1
+ J d z  J d P G w (K

~
z+PL/2,z_ PL/2)j , (76-a )

where
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Gw Ffl (cl ,K2,pI)

I i~
•

x l - e  . (76-b)

Equations (72) through (76) constitute the desired results of
this section. In deriving these expressions, we have made no assump-
tions involving the size of the outer scale of turbulence, L0. The
literature abounds with expressions for the log-ampl itude and phase
covariances and the phase-log-ampl itude cross-covariance for zero time

F lag ( r=O) [58,59] and/or axial f~ceiver p1a~e points (9~~~ O) [60or transmitter plane points (r1=r~=O) [22),[6l][62]. However. al
V of these derivations make use of the assumption (usually implicit)

that the outer scale is much shorter than the range. We shall demon-
strate that, for our purposes, no such assumption is necessary.

D• Reduction of Expression for Spectrum

In this section the results of the two preceding sections are
combined. Some simplifying assumptions and observations are then
made which tremendously reduce the complexity of the expression for
the scintillation spectrum.

Our procedure is to first make the weak turbulence approximation
(which we quantify) to simplify the expression for the H function of
Equation (29-b). Then by employing the expressions derived in the
previous section for the required statistical moments and symbolic-
ally performi ng a number of diffraction integrals we arrive at the
final expression.

The H function of Equation (2gb) is given by

H = ~~~~~ -e~~, (77-a )

where

~ 
[
~w
(
~1-~2

;0;0) +Dw (
~34~4

;o;o)] (77-b)

and
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a = — ~~~ [D
~
(ri—r4;r~

_r
~
;r) + D

~
(r2_r3,r~-r~;-r)

-
~w
(
~l

_
~3
;9_

~~
;T) -

+ 
~~~~~~~~~~~~~~ 

+ ~~~~~~~~~~~~~

+ iC
~s(

~
i_

~3;i9_
~

;T) - icxs (
~2 4 ;~14~

;t)] . (77-c)
-

• 
Under the weak turbulence approximation we assume that

I i i ,  l a l  << 1 (78)

so that we need only keep the first two terms of the Taylor ’s series
expansions of exp(-ct ) and exp (a);

H ~~ 1 -(cs-a) - (1-ct) ~~. . (79 )

In Appendix C we delineate the conditions under which we are justif ied
in making this approximation. For a von K~rm~n index of refract ion
spectrum these conditions are

ct < .546 C~ k2L(p1~
’3 + ~~3) << 1

and

a < .496 C~ k
7/6L

)L’6 << 1 .

where

Pli I”1
_
~j

I

From the results of the previous section (Equations (72)
through (76)) we see that H (Equation (29)) is given approximately
by -

•
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H = 2k2L2JJ d~~fJ 
dz f d P + J d z  J

( )
d I F ( L)

x f_l + e 1 2

i~• [z (i~ -~~~~~ )+(l —z) 
~“2~

’3 )+t~]
-l + e

i~.[z(~ ’-~’)+(l-z)(~ -
~~~ )+~~+ l + e  2 1 3

i~. [z(~ -~~)÷(1 -z) (
~2

_
~4 )+t

~1 
(80-a)

+ l - e

2• +2s in (Y)Le
i~.[z(~~-~~)+(l-z) (

~2-~4 )+T
~1

r ~~~~~~~~~~~~~~~~~~~~~~+ isin(2y) [e

~~~~~~~~~~~~~~~~~~~ 1- e ii.
where

z(1-z)I 2 L(Kp) 2
1’ 2k K - 8k . (80-b)

and we have adopted an operator notation for the p and z integrals.
By employing the Euler identities for the trigonometric functions it
can eas ily be shown that

1 1/2 2z 1 2(1—z ) ~
H = 2k 2L2 •~f 

d’
~ •j_J dz •f o dp + f d z  J d~

j 
F~(K1 ,K2,pL)

~~~~~~~~~~~~ ~ 
i( l_z )~

.(ir1
_
~4 ) I(1-z)~ .(~2-~3)

x e  + e

i(1-z) .(~1-~3)-i2y i(l-z)
~
.(

~
2_

~4)+l2y1- e  - e  j . (81)
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This expression can be factored to yield

( 1/2 2z 1 2( l-z) ~H = 2k 2L2 if d~~~f dz f dp + f dz I dp i . F~(K1,K 2.pL)1/2 ~o J
i .

X e

1 i(l-z)~~~1-iy i(l-z)~
.
~2
+iy1

x l e  - e  i
-i(l-z)~

.
~4+iy -i (l-z)~~~3-iy1x e  - e  . (82)

Wi th Equati on (82) plus the expression for the spectrum in terms
of the H function (Equation (29-a)) we have

Sp(w) = 2k2L2 
J:co

dt e
_
~~

T 
Jd~~W(i~j) Jd~~W (~~)

j  1/2 2z 1 2(l-z) 1
x JJ dK dz + J d z  f dpj F~(K 1 ,K2,PL)

f~
2 J~ J:t2 

E(~1)E*(~2) e~~ 
[(

~l-~~I
2

-I~2-
~iI

2
]

r i ( l— zY ~
.
~i— iy i( 1—z)~4~2+iy

x [ e  - e

, 

~ f~~3 fd~4 E(F3)E*(~4) e~~ 
[)~~~~ l

2
I~~~~ j2]

r-1 (l-z )~~4+iY 
-i(l-z)~

.
~3-iy 1~)x e - e  . (83)
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If we look only at the 
~l’~2 integrals we observe that they can

be written in the form

(k)2 e~~ Jd~lE(~l ) e~~~~~
2
~1 [~

j 
L (1-z)

x Jd~2E*(3~2) e
2L (r

~
-2

~2~~j )

(k)
2 
e~~ Jd~l E(~1 ) e~~ 

(rf-2i~
.
~~)

—ik 1 2 — 1—, L (l—z) — ii
x Jd~2E*(~2) e L -[2-2”2~ [~1 + k Kj J (84) 

- 
-

Now recall the formula for the Fresnel diffraction integral ;

E(F) = j~~ eikL 
Jd~5E(i~5 e~~ 

(r~_2~~~ +r2) 
. (85)

Comparing Equations (84) and (85) we observe that the r1 and r2integrations can be performed symbolically to give
2

— ik— , L(l—z ) — 
-

e 1
~
’ 
[e 

21 r1 - k K 

E(~ - L(l-z) —)]
ik  

~2
x 
[e~
tri E*(9)]

r-ik • 2 i rik I— , L(l-z) _ 2
_eh 

L~~
r.1 E(~i)j Le~ 

r1 + k K

x E*(~ + 
L(1 z) 

~
-
)] 

(86)
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where it is to be understood that the fields are the free-space
receiver plane fields. It may easily be verified that the r3 and
r4 integrations yiel~ the conjugate of this expression wi th the van -
able rj replaced by r~. With these simplifications Equation (83)
becomes

Ir l / 2  2Z r 1 r2(l-z) 1 r° —

S (w )  = 2k2L2 
~ I dz I dp + I dz I dp !~ I IdKp 1,0 ~0 

J 1/2 JO J iJ

I -1T(U) K*V)
x F~(K] ,K2,pL) j dr e

x ~fd
~~W (~pe

i
~~~l 

[e

Y+i (1
~~~
;
~~ e

l
~~~

2

~~

2

x E(~ - 
L( l-z) 

~
) E*(~~)

— — , i(1—z ) LK

- ~~~~~~~~~~ e 2k E(~~)E* (
~ 

+ 
L(1—z) 

~)] 
~2

(87)

or ]
r,l,2 2z ~.l ,2 (1—z) ~S (~) = 2k’~L

2 fl dz J dp + J dz I dp )’p 
L° 1/2 Jo J

x JJd F~ (K 1, K2,PL) [2iró(w-~~~))

x ~H(z,p,~,W ) - H*(z,p,_ ,W)~
2 

, (88—a )

where
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H(Z,p,K ,w) =

— i(1-z-P2/4)LK2

e 2k 
Jd~W (~ )e hI(

~~ E(~ 
- 
L(l_z)K) E*(fl

(88-b)

In Appendix 0 we demonstrate that due to the scintillatio n spec-
trum ’s extreme insensitivit y to low spatial frequency index of refrac-
tion inhomogeneities , very littl e error is incurred by dropping the

• p dependence of the II function and extending the limits on the p
integration in Equation (88-a) to infinity to yield

-

• s~(~) = 4ir2k2L 
J
dz ffd~ ofl(K1,K2,0)~(w-~

.
~)

x IH(z,~,w ) - H*(z ,_~,w)l
2 

, (89-a)

where

K(z, ,w) =

-i(1-z)LK2 — —
e 2k 

Jd~WG )e~~ ” E(~ - 
L(1_z)~) E*(~) , (89-b)

and we have made use of the relationship between the two and three
dimensional index of refraction spectra,

Lco~
h1) F~~(K 1 ,K2 ,PL) = ~ ~ri~’~l 

,K2,0) (90)

Finally without loss of generality we can assume the wind to be
bl owing in the x direction ,

V = x v  , (91)

so that performing the Kl integration in Equation (89) yields
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S~(w) = (4ir2k2L/v) jdz J d K  
~ 

(
~ ~~~

x JH (z,~ ’,w) - H*(z,...~ ’ ,w )J 2 (92)

where

~~~
‘ =( ~

,
~)

and we have dropped the subscript on the remaining spatial frequency
variable of integration.

Equation (92) is the expressed objective of this chapter. The
utility of this formula lies in the fact that it expresses the temporal
scintillation spectrum for an arbitrary field and that the expression
for the source field enters the formula only in terms of the free-
space receiver plane fields. This latter fact plays an important ro’e
in the chapters to fol low.

In addition to the mathe’iatical simplicity of Equation (92),
its various components are easily interpretable in terms of a physical
model of the turbulent atmosphere. The H function in particular dis-
plays some very interesting behavior which offers insight into the
propagati on prob l em. Equation (92) is expl ored and discussed more
fully in the next section.

E. Physical Model

Now we wish to interpret our expression for the temporal scm-
t~1lation spectrum in the context of a physical model of the atmo-
spheric turbulence. In this model the index of refraction inhomo-
geneities ire envisioned as a series of phase gratings [63] of
various orienta tions and spatial frequencies. The components of
Equation (92) will then be shown to describe the behavior of the
fields in terms of the properties of these phase gratings.

We wish to interpret Equation (92) of the previous section:

= (4ir2k2/v) ~~~ 
J:~

dK
~n~~ 

,K ,Q)

x JH (z ,~ ’,w) - H*(z ,_~ ’,w)}2 (93)
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where

H(z,~ ’,w) =

-i (L—z)K ’2 
— —

e 2k 
J
d~w(~ )e~’ ’

~~ E(r - 
(L_z)
) E*(~)

~~~~

‘ = ( ~
,
~) 

, (94)

and we have changed the z variabl e of integration to the product L~z.
As preliminary background to this discussion we introduce the

concept of a phase grating as sketched in Figure 7. Illustrated in
this figure is an arbitrary wavefront impinging on a phase grating.
The phase grating is merely a di ffrac tion grating whose transmi ss ion
function is periodic in phase rather than amplitude. To the right of
this phase grating (which can be thought of as a periodic variation
in index of refraction along a plane perpendicular to the di rection
of propagation) we have depicted only the zeroth order and plus and
mini~s one order diffracted wavefronts. It is easily shown [64] that
the angles of the axes of the two diffracted wave-fronts with respect
to the axis of the undiffracted wavefront are given by

= AlL , (95)

where x is the wavelength of the field and ~ is the period of thegrating .

Now consider the situation shown in Figure 8. Here we have a
phase grating of pericd

(96)

and orientation

-~ii~
•
i

located in the plane z.

An axial  ray strik ing this phase grating from the left w ill produce
zeroth and plus and minu s one order diffracted rays to the riaht— From the previous discussion the diffraction angles are seen ‘to be

(97) 

- • .
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I igure 7--First order diffraction angles of a
simple phase grating.

(L—z )
~

I — (L—z )~~
z K

Figure 8--Lateral field displ acements due to a
phase grating .

45

— • - - ----- - ——-----—-1 --~~~ - - 
— --•—— —_5-•—-- • -——- ---——

~~- --——.--’--.-———.~~——-——--- -- -• - - - -  - - A



and in the plane z=L the displacements from the propagation axis are

± (L-z)K (98 )

But this Is merely the displacement of the field in the expression
for the H function.

-

. 

The foregoing argument was an heuristic derivation of the field
translations observed in the H function. In Appendix D it is shown
much more rigorously that the total diffracted field of a weak
sinusoidal phase grating is given by

E1 = e
ik
~~~~ 

n1l 
Cn En (99-a)

where

—in 2(L—z) 2
En = e

1
~

1
~~

T e 
2k K 

E(~ - 
n(L-z) 

~
) (99-b)

m lc~~= 
(i

fr) 
, (99-c)

and c is a small number proportional to the “strength” (maximum phase
change) of the phase gratin~. In the above equati ons , n represents
the diffracted order and E(r) is the incident field.

The total irradiance i s gi ven by

IT = JE.~.I
2 

= j -~ ni_i 
C0C~ E~E~ ‘ (100)

and the total receiver power is

~T 
= J d~~W(~) I.~.

= ~ C~C~ J d~~W(~) E E* . (101)
n=-l rn—— i ~ m
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We retain only the terms in c° and c (because t Is small) so that
Equation (id ) -jives

P1 = J d~ w G) E(~) 2

- i(L-z) K2
+ c 1c~ e 

2k J d~ W(~) ~~~~ E(~ + 
(L-z) —) E*(~)

i(L-z) 2
÷ e 2k K 

J d~ w(~) eh1
~
r E*(i + 

(L-z) E(~)

i(L—z) 2 — —
+ c0c~r e 2k K 

J d~ W (~) e~~~” E*(~ - 
(L-.z) E(~)

- f ( L—z ) c2
+ c~c1 e 

2k 
f d~ W(~ ) e~’~ ’ E(~ - 

(L-z) E*(~ )

(102)

Each of these Integrals (with the exception of the first) -is merely
the H function or its complex conjugate. The H function is therefore
seen to represent the interference between the zeroth order field and
the plus or minus one order field.

Wi th the utility of the phase grating model of the turbulence
field thus demonstrated, we shall now demonstrate that the general
scintillation spectrum formula (Equation (93)) can be derived using
this model plus a few previously adopted definitions .

Essentially what we have implied in the preceding development is
that the index of refraction field can be expanded in an orthogonal
set of (moving) phase screens , the transmission functions of which
are given by exp(ic cosK.r). The problem however, is that the set of
cosine functions in itself is not complete [65]. Since the functions
sine plus cosine do compose a complete orthogonal set [66], we now
wish to apply the preceding technique to the situation in which the
“phase” grating transmission function Is given by

exp (ic e
1
~~ ’) , (103)
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where c is a small (generally complex) number. From Appendix E, the
resulting receiver plane field is seen to be

-Ifl2~L—z)K
2

E1(z,~,t) = e
lk -z) 

n~0 
Ci,, e

flK 
~

‘ 

e

E(~ 
- 

n(1 z) 
, (104-a)

where

C0 = l  , (104-b)

C1 = ic(z,~,t) , (104-c )

and we have Indicated explicitly the dependence of the field upon the
path variable, z, the spatial frequency, K , and the time, t. In the
strength function, ~~~, the z dependence denotes the location of the
phase grating, the K dependence indicates the strength to be a function
of spatial frequency, and the time dependence reflects the fact that
the phase grating is being blown by the wind across the propagation
path.

Following arguments and definitions employed earlier in this
section, Equations (94), (102), and (104) give for the receiver plane
power

PT(z, ,t) = PDC - ic *(z ,~,t)H*(Z,~,w) + iE (z,~,t)H(z,~,w)
(105—a )

where

jc 0j 2 
J 

d~ W (~)IE(i)l 2 (105-b)

As in Section B of this chapter, we define the scintillation spectrum
as the Fourier transform of the power covariance

S~(w) = e~~~
T C~(r) , (106) 
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where the power covarlance Is given by

C~(r) = Jdz l Jdz 2 JG JG’ <[PT (Zl,~
,t)-PDC)

x [PT(z2 ,~
1 ,t+T )_ PDc]*> . (107)

In this equation we have “sunined” the power (density) of Equation
(105) over all spatial frequencies and over all phase grating
locations between zero and L.

With Equations (105) and (107) the power covatiance becomes

Cp(r) J0
dzi Jdz 2 Jd~~Jd~’

-~ 

s x

- <c(z1,~,t
) (z 21~’,t+t)>H(z1,~,w)H(z2,~’,w)

- <c*(z1 ,,c,t)e*(z2,K ’ ,t+r),.H*(z1 ,K ,w)H*(Z2,ic
I ,w)

+ <c*(z1,~~,t)e (z2,~~1 ,t+t)>H*(z1 ,~~,w)H(z2,~~1 ,w)] . (108)

We now claim that the correlation function of the phase grating
strength is given by [67] (see Equation (58))

= k2 eltK ’ 6( I~
_
~ II)

x Fn(K l1K2~ IZ l_Z
2i)  , (109)

where F is the two dimensional spatial spectrum of the index of
refractYon field. In this equation the exponential phase term
reflects the frozen turbulence approximation and the statistical
orthogonal ity (with respect to spatial frequency) is ind icated by
the delta functi on. This orthogonality states that, on the average ,
only phase grating pairs wi th equal spatial frequencies and identical
orientations contribute to the fluctuations in the received power .
Finally, the square of the wavenumber, k, yields the correct units .
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We also claim that , for the term in Equation (108 ) in which neither
of the strength functions is conjugated, the correlation function is
given by [68] —

= k2 e t
~
’
~

/ 
~(I~~ ’I)

X F~(K pK2 Jzl—z 2I) . (110)

Combining Equations (108), (109), and (110) and performing the ~~~
‘

integrations yields for the power covariance

c~(1) = k2 
J
dz1 f dz2 Jd~ F~(K1 ,K2~lz 1-z2I)

x [e
ih~~~ [K(z1 ,~,w) K*(z2,~,w)_H (z 1 ,~,w) H(z2 ,~,w)]

- e
_ IT 1

~~~~
f 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
( 111)

Assuming isotropic turbulence and making use of the change of
var iable

K~~~~~K

gives

I
C~(r)  = k2 

J dzi f dz2 ~~~~~~~~~~~~~~~~~~~~~

x [H(z1 ,~,w)H*(z2,~,w)_ H(z 1,~ ,w) H (z 2,_
~ ,w)

— H*(z 1,_
~,w) H*(z2 , _

~,w ) +U*(z1, _
~,w ) K ( z 2,_

~,w)] . (112)

Switching to sum and difference coordinates on the range variables

z = (z1+z2)/2 , p = z1—z 2
(which correspond respectively to the mean position and separation
of the phase grating pairs) and using the argument that the index
of refraction spectrum, F~, is very small for

~ 2ir
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(see the discussion in Appendix D) we obtain finally

C~(r) = 2wk 2 Jdz Jd e~
t t
~~ ~n

(1,~c2,0)

x JH(z,K ,w)_H*(z,_K ,w)12 . (113)

The scintillation spectrum is then given by

- 

- 

Sp(w) = (4w
2k2/v) fdz 

f

:
dK .,~ (~ 

,K,0)

x H(z,~~,w)_H*(z,
_
~

1 ,w)I2 , (114)

where
~~~

‘ = (w/v,c) ,

and we have assumed the wind to be blowing in the x-direction .
Comparison of Equations (93) and (114) shows them to be identical.
It is indeed satisfying that with a few reasonable assumptions we
have duplicated the results of the much more rigorous development
of the preceding sections.

The purpose of this section has been to give a more physical
picture of the mechanisms giving rise to temporal scintillation.
Salient features of the development contained herein were the expan-
sion of the index of refraction field in a complete orthogonal set
of phase screens and the symbol ic performance of the di ffrac tion
integral to obtain the fields diffracted by the phase screens. By
using previously adopted definitions for irradiance, power, and the
temporal scintillation spectrum, and making some physically justi-

— 
fiable assumptions, the results of the preceding sec tions were

• duplicated. The H function in particular was seen to have an inter-
esting interpretation in the context of a phase grating model of
the atmosphere. It represents the power associated with the inter-
action between the zeroth and pl us or minus one -order diffracted
f ields of the phase grating.

This concludes the discussion of the formula for the temporal
scintillation spectrum.
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F. Sumary

In this chapter we have performed the bulk of the mathematical
development which is to be applied in subsequent chapters. The
objective was to derive a general expression for the temporal scin-
tillation spectrum of an arbitrary source field and an extended
receiver. This was accomplished in several stages. Use was made of
the Extended Huygens-Fresnel integral to derive a formula for the
spectrum in terms of the second order statistical moments of spheri-
cal waves. Expressions for these statistical moments (within the
weak turbulence regime) were derived by the method of smooth pertur-
bations and applied to this formula. Various simpl i fications and
manipulations f inally resul ted in an extremely compact yet versa ti le
expression which was then interpreted using a phase grating model of
the turbulent atmosphere.

Section B of this chapter was devoted to developing a general
express i on for the temporal scintillation spectrum of an arbi trary
field source. An extension of the familiar Huygens-Fresnel diffrac-
tion integral was employed to express the receiver pl ane field of an
arbitrary source in terms of the complex phase perturbations to ~spherical wave. The power received at the detector w- defined as the
surface integral of the Irradiance (square modulus ) o’ .~is field , and
the temporal scintillation spectrum as the Fourier transform of the
covariance of this power. The resulting formula required knowledge of
the covariance of irradiance of spherical waves. Under the assumption
that the spherical wave complex phase perturbations were normally dis-
tributed, this fourth moment of the field was expressed as a series of
second order statistical moments. One interesting aspect of the
general result of this section was that the expression for the spectrum
retained terms proportional to the cross-covariance of phase and log-
amplitude.

Expressions for the required log-amplitude covariance, phase-log-
ampl itude cross-covariances , and wave structure functions were derived
in Section C via the method of smooth perturbations . These derivations
relied upon the assumption of local homogeneity of the index of
refraction statistics, and the paraxial ray approximation. Temporal
behavior of the statistical moments was deduced by making use of the
frozen turbulence hypothesis. The results , of this section showed
the desired statistical moments to be simultaneously homogeneous in
temporal separations and spatial separations within both the trans-
mitter and receiver planes. -

The results of Sections 8 and C were combined in Section D. By
using the weak turbulence approximation and making some simple alge-
braic manipulations, the resul ting formula was expressed in terms of
a series of diffraction integrals which were performed symbolically
to yield the final expression for the spectrum. This formula for the
temporal sc inti llation spectrum of an arbi trary source, was in terms
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of integrations over the receiver plane fields, a single spatial fre-
quency variable, and a propagation path variable.

In Section E a model of the atmospheric turbulence was developed
• in terms of weak phase gratings. Using diffraction theory and some

-
‘ physically justifiable assumptions the results of the much more

rigorous development of the preceding sections were duplicated , and
the component parts of the formula for the scintillation spectrum
were given physical interpretations .

The following chapters are concerned with the appl ication of the
-
‘ resul ts of thi s chapter to prob lems of contemporary interest.
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CHAPTER III
ANALYSIS OF A CLEAN GAUSSIAN BEAM

A. Introduction

This chapter is concerned with application of the results of
Chapter II to calculation of the temporal spectrum of a gaussian
beam wi th an off-axis point detector. The choice of this particular
source description is appropriate because the output of most lasers
is closely approximated by a gaussian beam. Further , the assumption
of an off—axis detector is reasonable if for instance the laser beam
is being steered by a servo system. Nominally a tracker would steer
the laser beam so that it is centered upon the detector. Since how-
ever this may not always be the case [69], the development herein
is of obvious importance.

Within this chapter an evaluation of the temporal scintillation
spectrum of a gaussian beam in the presence of weak turbulence and
with an off—axis detector is presented . Analytic expressions are
developed for the asymptotes of the spectrum wi th axial as well as
off-axis point detectors. The orientation of the off-axis detector
with respect to wi,~d direction is shown to have important effects
within the low frequency portion of the spectrum . For a typical
laser beam, computer analyses of the spectrum are provided . Plots
are presented of the differential path contributions as well as the
spectra for various detector locations . Finally we discuss the ex-
tension of the theory presented herein to the treatment of finite
receiver apertures and a fir,ite inner scale.

As a result of the analysis it is shown that for an off-axis
detector, the low-frequency behavior of the gaussian beam spectrum
departs markedly from that of plane and spherica l waves . In ad-
dition , the differential path contribution for an off-axis detector
is peaked toward the transmitter (as it is for a plane wave) even
though the receiver plane is well wi thin the far field of the laser
beam.

In section B of this chapter use is made of the general formula ,
derived in Chapter II, in developing an expression for the temporal
scintillation spectrum of a gaussian beam wi th an arbitrarily placed
point detector.

An asymptotic eval uation of the gaussian beam scintillation
spectrum is given in section C. Analytic expressions for the
asymptotic high and low frequency behavior are provided.
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Sec tion D conta ins numerica lly calcu lated spectra for seve ral
typical beam—detector orientations . In this section we also
present plots of the computer-calculated differential path con-
tri butions for some typical cases.

Two additional topics, the effect of finite receiver apertures
and non-zero inner scales , are discussed in section E. —

Section F sun~arizes the chapter.

B. Development of Expression for Gaussian Beam Spectrum

We now wish to apply the results of Chapter II to derive an
express ion for the sc inti lla tion spectrum of a gauss ian beam.

Throughout this section and the remainder of this work we
shall assume that a laser beam field is typified by a spherical
phase front and a gaussian field ampl i tude profile [39]

fik(x2+y2) (x2+y2)].
E(x ,y,z) = E0(z) el 2R(z) - 

w2(z) J

where R(z) and w(z) are real functions describing respectively the
radius of curvature and the e-1 amplitude (or spotsize) of the beam.
To simplify notation however we will write the field in terms of a

t complex radius of curvature

-k(x2+~
2)

E(x ,y,z) = E0(z) e 2F(z)

Specifically we assume that the gaussian beam field wi thin the
rece iver pl ane is 2

______ 

-kN/2L r
ikL(l+z /1) JkN 2L l+iN (l+z IL)

Efr) = e l+iN(l+z0/ L) e (115a )

where the beam waist is located at z-z0 and N is a Fresnel number
def ined as

N 
~ 

, (ll5b )
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where w0 is the beam waist spotsize. For this field the receiver
plane radius of curvature and beam spotsize are respectively

[1+N2(l+z IL) 1
R(L) = L I 2 

° I (115c)
[N (l+z0/L) ]

and

W(L) = w0Jl+N 2(l+z0/L)
2. (11 5d)

For a point detector located at

= 

~(Ii~-~ I) (116)

the i-I function of Chapter II becomes

H(z,K’,w) = (117)

e
1
~~~~~~ e ° °E(iO 

- ~~~~~~~~~~~~~~

Use of Equation (ll5a ) for the receiver plane field gives

-(kN/L)r2
—I (l— z)LK ’2 .—

‘ 
— _ _ _ _ _ _ _ _ _

H = e 2k e~~ 
•r0 [k~[2L 1 e1

2(1+
~~
2

[~ +ii2çi+~~
2j

-kN/2L f-2L(l-z) —
‘ 

—
‘ + rL(l-z)12 ,2~l.x e  l+iN(l+c) r0 K 

~ k j  K]  ( l l8a )
where we have defined

c = z0/L. (ll8b)
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with some straightforward algebra we see that

IH(z , ’ ,w) - 1~ (z, - ’ ,w) 12 =

-(2kN4IL)r2 -N(l-z)2LIk ,2

kN/2L 21 eh 1
~~~ e1~~

2(1
~~
)2 

K 

(119)
Ll+N (l+e) J

x~~2 cosh 12N~~~ ~t_.. L1+N 2(l+c)2

-2 ~~ ~
(l-z)L K ’2 [l+N

2(l +e)(z+E)

- 

-

- 

k 
~ l+N

2(l-i-e)2

By employing Equation (92) of Chapter II and the doubl e angl e
formulae for the trigonometric and hyperbo li c functions we then
obtain the expression for the gaussian beam scintillation spectrum

—(2kN/L)r2

S (w )  = (l6ir 2k2LIv) [kN/2L 2] e
N
2(h1

~~
2

P l+N (1+c)

—N(1-z)2LJk (12

X J dz i: dK~n(~ ,K,O) e1
~~

2(
~~~

2 
(120)

x~~ nh2 <
~~~~~2 ~~‘]

+ sin
2fr 

K12 
_ _ _ _ _

where ~~~~
‘ ( ,K )
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For the special case of an on-axis point detector fr0=O), Equation
- 

- (120) reduces to

r 12 ,1 ,
~~~ 

,

S (~ ) = (32n 2k2L/v) kN/2L J dz J 
dK$~(~~

K~O)p 
Ll+N

2(l+c)2J 0 0

-N(l-z)2 (12 r r -1~1

e1~~
20~~

)2 ~~~~ 
(l-z)L 

1(
12 I N2( c)

~~) I ~ . (121 )

I. Ll÷N (l+~) JJ
Equation (121 ) was derived and evaluated for a variety of Fresnel
numbers and beam waist locations by Ishimaru [39]. He however
employed the technique of Tatarski [70] in obtaining this expression
for the spectrum . it is pl easing that, under certa in c i rcumstances ,
these two techniques (Tatarski ’s and the Extended Huygen ’s-Fresnel )
should produce exactly the same resul ts.

In the l imi t as N÷0 (plane wave) and N-Icc (spherical wave) Equation
(120) yields respectively

dz J dK~~ (
~

- ~~~~ 5~~2[(l_z)L ,~i2] (l22a)

and

dz J dK4~ (
~

- 11K~o) sin
2
~~~~

)1 z+: 1(1 2] ( 122b)

Equations (122a ) and (122b) which are expressions for the plane and
spherical wave scintillation spectra, are treated extensively by
Tatarski [36] and Clifford [35].

throughout the remai nder of this work use will be made of the
von Karman form of the three-dimensional index of refraction spatial
spectrum [31],

2 2 2 2 1 077 21-11/6

~n
(K 1,K2,K3) 

= .o33Cfl[Kl+K2+K3 ~
( 

~~~~ 
)~ (123)

whereas most previous workers [35], [39], [71] assumed the Kolrnogorov
(infinite outer scale) model . In addition, Equation (120) can be
put in a form more convenient for analysis by non-dimensionalizing the
K integral through the change of variable
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The temporal spectrum is then given by

S (~
) = .033ç~16i~k

2L(15t)8”3 v~ {
kN/~L ]2 (125a)

P l+N (l+c)
-

. 

-4irNr ’2

x e1~~
2(1
~~
)2 J dz + (1.o77~~~~~

’

;
_ 

—N(l— z)2[K ’2+(w/~ )
2j

x e 2~{l +N 2
(l~~)2] 

~Sifl h~1 Nki-z~ 2 (x ’
L1+N (1+c) O U ~ ~ j

+ sin 2
{q;

z) 
[
1~~ ~~~~10~~][K

l2 
+ (
~
)1}]~

where all of the primed variables denote those which have been
normalized to the plane wave Fresnel zone :

L~ = L0/ITE (125b)

K ’ = P’5~~K = 2~/(L/VT[) (125c )

r~ = r0/ /X L (125d)

and

viJ~t w . - (l25e)

Since the predominant diffraction pattern size at the receiver is of
dimension on the order of the Fresnel zone, .Txt [62], the normalization
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frequency, u¼~, is seen to be the temporal frequency observed when thisscale size is blown through the beam path at velocity v.

We now write Equation (l25a ) in the form

r 2
S (w ) = .033C~41r

2k2L(./~t)
R
~
’3V

_ I 
~~~ 2 1 (l26a)

Ll+N (l+c) J
-47TNr~

2

x e N2 +c)2 [5l (w)+52(w)], -~~

where the func tions S1 (w) and S2(~) are given by

S1 (
~
) = 4J dzJ dK l [K~

2 
+(
~._)

2 
+(

l.
~~

7)1_~hhl6 
(126b)

_N(l_z)2{K12 +(w )

2

}

x e 2’rr[l+N
2(l+€ )2] s1nh2 {I~~-) 2(x~ ~ — +y

1 K
’))l+N (l +~) ° o °

and

-11/6

S2(~) = 4 J dz L~’{’~’
2 + 
(
~_)2 +(1.~~z)2] (126c)

_N (l_z) fK
t 2+(~~. )

2]

x e
2
~
hi
~~

1
~ 
(1+6)2] . 2{’(i;z) ~ N2(1+c)(1_z)][K.2i{w

)

2

]}

The purpose of this division of the spectrum into two components is
to isolate the effects due to the detector being off-axi s (given
by the function Si(w)) from the behavior of the spectrum wi th the
on-axis detector (given by the function 52(w)). If the spectrum
of Equation (126) is normalized to the spherical wave log-ampl itude
variance [21]

= 
Q99 7/2 21/3 

~ 
C2k7”6L 11”6 

, (127)S 64r(4/3)(-cos ~~ ~ 
n
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- we obtain finally
-4irNr~

2

w S (w ) 1 ~,2,, ~20 P = C e’” ~‘~~ ‘ [S (w)+S (u)] (l28a)
I , ,La 5

where I is the on-axis receiver plane i rradiance

I(O,0L) 1WIN (1+c) 

~2

, (l28b)

and

C = 2/3 ~~ r(4/3)(-cos ~~~ ~
) = 48.527. (l28c)

This particular normalization is chosen so that the area under the
spectrum is normalized to the spherical wave log-amplitude variance;

wS(w )
lim I d —,~ = 4 x 2 w w , (129)
N-Ico -‘ -cc P(O,O,L)a~ °
c.*O
L0-’-°°

where the additional factor of four arises from the difference between
the variance of irradiance and the log-amplitude variance,

= 4

under the weak turbulence approximation [62]. Equation (129) can be
verified by taking the indicated limi ts of expression (129), changing
the K.’,W var iabl es to polar coordinates , performing the angular in-
tegration , and employing integration formulae presented by Tatarsk i
[72).

Equation (128a ) is in a form convenient for asymptotic and numer-
ical analysis. The asymptotic evaluation for each of the two com-
ponent spectra (Si and S2) of this expression will be presented in
the next section .
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C. Asymptotic Evaluation

- 
- In this section we develop analytic expressions which describe

the asymptotic high and low frequency behavior of the scintillation
spectrum of a gaussian beam with an off-axis detector. These formu-
lae are derived assum ing an arbitrary beam Fresne l number , N , and
an arbitrary detector location , r0. Because the spectra Si (w) and
S2(w) exhibit diverse behaviors , they are evaluated separately.

Asymptotic Behavior of Si (w)

The Si spectrum of Equation (l28a) arises simply because the de-
tector is off-axis to the gaussian beam. It is identically zero if
the detector is axially located . Typical results presented later in
this section will show that Si makes a sign i ficant contribution to the
total spectrum only within the low frequency range, i.e., for fre-
quencies such that

— 
~~~~~~ (130)

We now wish to make two approximations which will greatly simplify
the eval uation of the spectrum Si . First we approximate the exponential
function and then the hyperbolic sine function in Equation (126b). The
argument of the exponential function is bounded in its z and N variables
in the fo l low ing manner:

N(l-z)2 
2 11(

I2
~~w/w )2 ] < 1 [1(l2~( /  )2] (131 )

2’rr[l+N (1+c ) ] ~ °

At the point

K~ ~~J (wIw~)
2 + (1.077/L~)

2, (132 )

beyond which the function

{K 12+(w/ )2+(1 .O77/L~)2]1l/6 (
~

decreases rapidly, we have

1 [12 +(/ ) 2) = .i_. [ 2(w,’w )2+ (1.977)2] (134 )
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If we restrict our attention to temporal frequencies such that
~~~~~~~~~~ 

io(’~?77) (135)

then

~~.[2(~_)
2 
+(

~~
977)2]< ~J - (L~

?77) . (136)

Then for

201 11.077 ~2 1
~~~

;-5-

~~~ L~~)
<<

or

1~ (i.on~
~ L~ )< ~

or

10 > i .077 J~j ij ~i ‘~~ 4JTL (137)

we can use the approximation

—N(l—z)2[K ’2+(w/w )2]
2 2 ° ~~1. (138)

e24’~~ 
(l+c) ]

We now must approximate the hyperbolic sine function in Equation
(l26b). Its argument is bounded as follows :

(x~ ~~~ + y~;K ’) 

~~ ~~~~~~~~~~ 

(x
~ ~~

.— + y
0 

K ’). (139)

At the point

K~ ~~J(w/w0)
2 + (l.077/L~~
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we find

~~~ (x~ ~L + y
0

K ’) = (x 0 ~~ + y0~ (w/wo)
2+(1 .O77/L~)

2).

(140)

For temporal frequencies such that

, (1.077
~ 

iO~ L’0 0

the argument of the sinh function is

N (l-z) Cx ’ ~~~— +  ‘) < 5 (l.O77)1~t +
l+N2(l+c~~ ~ 

y0K L~ 
(x c, y0)

< 5(1.077) r0. (141)

By requiring

5(1.077)r0
Lc, << 1

or
L

r0 << 5(1.077)’ (142)

we can empl oy the approximation

sinh 2 X ~ . (143)

With the foregoing approximations the expression for Si in
Equation (l26b) becomes

S1(~) = ~[l~~2~i+ 2 ] J:
dK hIK 1

2tj +(l~9~~ ~j
~ll/6

x (x ,~ — + y~ 1(
l)2~ (144 )
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By expanding the quadratic term In the integrand of Equation (144) it
is seen that the cross term is an odd function of c~ and the integral
goes to zero. Therefore Equation (144) is

2

~~~~ 41 N
= ‘TI

“Ll +N (l+ c)

- 

- 

x 
{(

x~ ~
‘)J..cc~

’ [K 1 2 + ( / ) 2 ~+(l 077 )
2]

ll /6 
(145)

+ (y~,)
2 

J d~’ K 12[1c 12+(w/u)O)2 4(1.077 11_i 
1/6

The change of variable

U = K Ir _)4(T1—)i (146)

allows the expression of these integrals in terms of Beta functions [73];

S1 (w) =
~~ [l+N2

~~+~~~
]2 ~~~~~~~~

x [(x~)2 (w~~
2

[(w~~
2 
+ 
(
~~77)2]

4/3

+ 3 (y i) 2[((13 ) + (l.97Z)
2]_h h

/3} 
, 

(147 )

where we have used the well known identi ty relating the ganina Cr) and
beta functions [73).
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For the çietector and beam axis along a line collinea r with the
wind , r~ = (x0,0), (recall that we assumed the wind to be blowing in

- 
- - the x direction) then Equation (147) predicts

1(w/w )2 ; w/w < l.077/L’

~ 2 3 (l48a)
~ (WIW ~,Y ; w/w~ > l.077/L~

However for the detector and beam ax i s along a li ne orthogonal to the
wind direction, r~ = (0,y~),

Iconstant ; w/w < l.077/L’
23 ° ° (l48b)

; w/w~ > 1.077/Lb

These asymptoti c results are sumarized in Figure 9a in which we have
defined 

~r 
as

— 
- 

~ 2 2 (149a)
(l ÷€)

and the constant C1 as

c = 
.ii~r(4/3) (14gb)1 r(ll/6).

Figure 9b shows the resulting numeri cal values of the asymptotes when

N = 2 x
C 0  (150)

L0 = l o meters

J1 = 2.516x10’2 meters

and the detector is loca ted at
= (.63,0) (l5la)

and

= (0,.63). (151b)
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Figure 9a--Asymptotes for S1 spectrum.
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We can normal ize the off-axis distance , r0, to the receiver plane
be,am spotsize (Equation (ll5d)) to obtain for Equations (151)

w (L) = (1.00,0) (l52a)

and

• ____ = (0,1.00). (152b)

Note that for the case

= (x c,,0),

the peak of the curve occurs at

w - r 1. 077
0 0

even though the +2 and -2/3 asymptotes intercept at

w _ l .077

~o 1c; -

This can be verified by differentiating Equation (147) with respect
to

We now return to our phase grating model of the atmospheric
turbulence and sketch, as in Figure b a , the receiver plane positions
of the zeroth and plus and minus one order diffracted beams as
functions of the spatial frequencies w/v and K.  (Recall that the
spatial frequency w/V is associated with the wind direction.) This
figure merely illustrates the fact that, for a finite beam , the
detector position with respect to the wind direction and the zeroth
order beam axis will have an effect upon the scintillation spectrum.
Of course for fields of infinite extent, e.g., plane and spherical
waves, the detector “position” loses distinction. Indeed , it can
easily be seen that the S1(w) spectrum goes to zero as the beam
Fresnel number approaches zero or infinity . These limi ts correspond
respectively to plane and spherical waves.
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Figure bOa--Di ffracted orders of a finite beam .
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- 
- For the detector off-axis to the zeroth order beam the O-~1

beam interaction and the 1-0 beam interaction contribute un-
* equaliy to the scintillat ion spectrum. When the detector is in

the 1St or 4th quadrants the contribution to the spectrum is
weighted toward the O-~i beam interaction. Likewise , when the
detector is in the 2nd or 3rd quadrants the 1-0 beam inter-
action predominates.

In Figure lOb we have illustrated the zeroth and +1 order beams
for a phase screen located at z=0. Al so shown in this figure is the
beam deflection region for which the index of refraction spectrum ,

~~ 
i s cons tant

[2 2L Ll.077+ (w/v) 
~~~~ L0

With this figure we wish to illustrate the behavior of the spectrum
for the case in which the detector is at either zero or 90 degrees
with respect to the x-axis .

For the zero degree case (F0=(x0,O)) the magnitude of the product
of the zeroth and +1 order beams (in the expression for the H function)
increases as w/V i ncreases simply because the deflected beam ’s axis
moves closer to the detector. In fact, the product is maximum when
the deflection is such that

k V — r O .

However , once the +1 order beam is deflected out of the region for
which the i ndex of refraction spectrum is constant, the scintillation
spectrum will decrease (since 

~~~~ 
decreases beyond this point). There-

fore the scintillation spectrum will increase up to the point at
wh ich

L w L 1.077
1~V i ~ L0

or

1.077

and will decrease beyond this point.
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For the detector off~axis to the zeroth order beam the 0-
i
l

beam interaction and the 1-0 beam interacti on contri bute Un-
equaliy to the scintillation spectrum. When the detector is in
the 1~t or 4th quadrants the contribution to the spectrum is
weighted toward the O~~l beam interaction. Likewise, when the
detector is in the 2nd or 3rd quadrants the 1-0 beam inter-
action predominates.

In Figure lOb we have illustrated the zeroth and +1 order beams
for a phase screen located at z0. Al so shown in this figure is the
beam defl ection region for which the i ndex of refraction spectrum ,

~n’ 
i s cons tant

1 2  2 L  L l .077
~J K  + (w/v) 

~~~ L0

With this figure we wish to illustrate the behavior of the spectrum
for the case in which the detector is at either zero or 90 degrees
with respect to the x-axis .

For the zero degree cas e (~F0=(x0,0)) the magnitude of the productof the zeroth and +1 order beams (in the expression for the H function)
increases as w/v increases simply because the deflected beam ’s axis
moves closer to the detector. In fact, the product is maximum when
the deflection is such that

L w  -

k 
—

However , once the +1 order beam is deflected out of the region for
which the i ndex of refraction spectrum is constant, the scintillation
spectrum w ill decrease (s ince 

~n 
decreases beyond this point). There-

fore the scintillation spectrum will increase up to the point at
which

L w — L 1.077
~~v k  L0

or

~ _ l.077

and will decrease beyond this point.,
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Figure l Ob—-Zeroth and plus one order diffracted beams.
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When the detector is at the 90 degree location fro = (0,y ) )
the K variable of integration sweeps the deflected beam throug~ allpossible orientations with respect to the detector. Hence the
scintillation spectrum will remain constant up to the frequency

w - 1.077
L~,

and decrease thereafter.

The purpose of the preceding discussion was to provide a physical
interpretation of the effects observed when the detector is off-axis
to the beam. Of course if the detector is axially located we should
expect to see none of the behavior which has just been described .
Qualitati vely, the resul ts of this discussion and of the earlier
analytic evaluation are identical , thus lending credence to those
results .

* Asymptotic Behavior of S2(w)

The S2 spectrum of Equation (b26c ) is simply the spectrum of a
gauss ian beam with an ax ia l ly loca ted detector. As suc h , it de-

— termi nes the behavior of the spectrum of Equation (126a ) for an axial
detector as wel l as for the limiting plane and spherical wave cases.
We shall be concerned with two basic frequency ranges; high frequencies,
such that

>> 2,r ,

and low frequenc ies, such that

~~— < <  2n.

In addition , within the high frequency region, we are interested in
two sub-regions :

-

- N(w/w )2

2 2 > 1 (sub-region A)
2ir[l+N (l+~) ]

and
N(w/w )2

2 2 < 1 (sub-region B).
2ii[l+N (l+c ) ]
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Within the high frequency region , i.e. frequencies such that

~~
— > >  2ir , ( 153)

the sin2 function is oscillating so rapidly with respect to the other
terms in the integrand of Eq. (l22c) that we may set

sin2(..) ~ ~~
- . ( 1 54)

The S2 spectrum is then g iven by

52(w) = ~ d~’ [K12 +

N{K I2 +(w/w 0)2 1 2

x du e 2h1~~+N
2(l +6)21 

U 
(155)

where we have made use of the change of variable u=b-z. For very
high frequencies (high frequency sub-region A) the u integrand is
smal l long before the upper limi t of u l  is approached . Therefore
the upper limit may be extended to infinity and the u i ntegration
performed in closed form to yield

N/2~ 
1-1/2 

~“= 2 —7/3
S2(w) = 2 ~~ 2 2 1 J dK ’[K’2 + (W/W O) J (156)

l+N (1+6) J 0

The chan ge of var i abl e

x = 16 12/(w/wo)
2

puts Eq. (156) in terms of a Beta function [73] integral which gives
for the S2 spectrum
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~~~~~~~~~~~~~~~~~~~

S2(w) 
= ~~~~ 

[1+N :2]~~

2 

(
~~~ll/3 

. (157)

For the case in which the upper limit on the path integration
cannot be extended (high frequency sub-region B)

52(w) = 2 ()
8/3 

Jdu e~~ J
dPc K /2 ( +1 ) 

-11/6 e~~
2K

0 (158)

where

- 

(N/2Tr )(w/w 0 )2

1 + N (1+6)

and we have used the change of variable

,2 2
K K

The K integration is of the form 174]

Jdt t2’~
1 (t+l)2~~

= r(2v) ~~~~~~~ eP~
’2 W

~
_
~,~,+v_½ 

(P ) ( 160)

where W is Whittaker ’ s function [75],[76] which can in turn be expressed
as

~j1-2i.i-2v) ~i+v -p/2
= p e 1F-j (2v;2p+2v ;p)

+ r(2w42v—b ) ~l—i ~.-v e~~
’2 F (l-2p ;2—2~i-2v;p), (161)

r(2v) 1 1 -

- 
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where 1 F1 i s Kumer ’s confluent hypergeometric function [76] defined
as

1 F1
(x; y;z) = 

n~O 
r(x) r(~’~~) ~~ 

. (162)

With these formulae Eq. (158) is

S2(w )  = 2 r(~1~6~ (
~~
)

8/3 
Jdu e~~

2 
1F1(~ ;~~;bu 2)

+ 2 r(~4/3) (~~)

813 

J
’du e~~

2
(bu 2)4/3 1

F1(~~;~;bu2). (163)

Empl oying Eq. (162) and integrating term by term yields finally [771(78]

- 

-8/3 f~
ç r(4/3 (1/2)~ [

~~~~
)

2
]n

S2(w) - <

~ 

r(ll/6~ ~ 
(H/3)n n~~~~~2)

x l Fl(n4;n4; -

1c~rfw ~21
n+4/3 

2

+ r(-4/3) 
n~D 

n 
n!(n+ll/6) 1 Fl (n+

_;n
~~~;1~{~ -))

(164)

where (a)n is Pochhanner ’s symbol def ined as 
—

(a) n = 
(
~~~ (165)

and is defined as

= 
N 

2 (166)r l +N (1+6)
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By i ntegrating the hypergeometric functions in Equation (163) term by
term we have made the tacit assumption that these series are uni-
formly convergent [79]. That this is so may be shown by calculating
the radius of convergence [80] of

1 F1 (a; b ;z) = ~ CnZ”~ 
(l 67a)

n=O

- . 

. 

where

= ~~~~~~~ -~~~~- (167b)

The rad i us of conver gence , R, is given by

,. n+b .. l,im 
~ 

-

~~~~~fl4.~ fl

For the confluent hypergeometric function

= 

~~~ (b~n)d+n)I o, (169)

i.e.,

R-*~ . (170)

Therefore the (confluent) hypergeometric series is uniformly con-
vergent [81] for all values of the argument z (which is in general ,
compl ex), and we are justified in integrating the series term by
term . -

If we retain only the first few terms of the series in Equation
(164) the behavior of S2 within the high frequency region may be moreclosely examined ;

S2(0i) = 
2.ffr(4/3) 

(
~;)

_8/3
~
[l 

- 
5 ~~( ) 2 3 r(-4/3)r(ii/6)

~ {~~(~
_)2]4

hF

~1. 
(171)
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- - The dominant behavior in thi s frequency range is seen to be the -8/3
power of frequency .

The low frequency behavior of s2 is now calculated by retract-
ing the approximation of Equation (154), letting

. 2 1 1 i2xsin x — - Re{e } , (172)

S 

and employing techniques and formulae similar to the preceding [74,82,
83]. This approach results in the formula

= 2vc A 813 ft ~~~~~ n~0 ~~~~ 

( A 2,2)n

x 1
F1th+ ~;n4;~arB

2/2~)i r(-4/~~ 
(ll/6)~ rA

2/2
~~~

413

n+l/2 2 ,ç- n~O 
(7/3)~ n!

1F1(~~ 
.
~
1;n+

~
Z-;_c

~r
B2/2

~
) [r(4/3) (l /2’1~ 1 (— iA 2V’x n+ll/6 

— Re
[r

-
(
-.11Th)- 

n~O 
(l/3)n ~T ~2ir )

I~B
2\m 2F1 (-(m+n ),m+n+l ;m+n+2;_ia)

x J0 m l (m+n+l )

+ r(-4/3) (11/5),, 1 (-iA 2\~~4/3 fiB2\m
I”~~ n~0 

(7/3),, ~ii~ ~ 2n ) m~O ~~

2
F
1 (~~~ th+ ~),m+n+ ~;m+n+ ~

P.; ..j c& )
x ml (m+n+7/3) j J ‘ (173a )
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where

a 1—IN(1+6)

cir = Re{a} = N 
2 ( l7 3c)

l+N (l+c)

A 
=[(~L) 

+ (1~?77)2] 
1/2 

(b 7 3d)

B = w/w0 . (173e)

- - and 2F1 is Gauss ’ hypergeoinetrlc function [84] defined as

~ (w) (X) ,,
= 

~ 
(y) 

n 
~~~~

_ (174)

While we have made no approximations in deriving Eq. (l73a), its
usefulness is limited to low frequencies because the series do not con-
verge uniformly for N on the order of unity or for high frequencies.
If only the fi rst few terms of the equation are retained , we obtain

~ ~ 
) - 2~c r(4/3) [27 (1 \

4/3 r(ll/6) (Flp(N)
2 “~ r(l1/6) 

[~~~~~

• 

~~~ 
r(7/6) \F15 (N)

+ F2(N )( A 813 B4 + 3A 2/3 B2 - ~L A4/3
)] 

‘ ( b 75a )

where the functi on

F1~(N) = + [1 - 

~~~~~ ~~ + /5 a,.)

+ (c *~ 
- + 2/5 ctrai)] (175b)

gives the correct plane wave D.C. level as N-+O, and the function
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— 4/3 ÷.Rr(4/3)r 3r(ll/b)2

goes to the spherical wave D.C. bevel as N~ c . Also in Equa tions ( 175)
we have de fined

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (175d )

and

a
1 

= Im{a} . (175e)

To wi thin a multi plicative constant (due to the normal iza tion used
herein) Equation (175a) can be shown ’to yiel d the limiting plane and
spherical wave (N-’-O,N-~°) behavior as quoted by Reinhardt and Collins[31].

As an indication of its pl ane and spherical wave limits we have
displayed in Figure 11 the D.C. level of 

~2 
normalized to the spherical

wave D.C. level , as a function of the Fresnel number N. Although
Figure 11 indicates a lac k of agreement between express ions (175b) and
(l75c) wi thin the region N’b , the f igure  is indicative of the con-
ditions under which the gaussian beam may (for the purposes of ob-
serv ing scintil la t ion spectra) be cons idered to be in the near or far
fields.

Final results of the asymptotic eval uation of the spectrum S2 are
presented in Figure l2a. The breakpoint between the zero slope D.C.
level and the -8/3 slope , which is commonly referred to as the Fresnel
breakpoint, will move slightly as the Fresnel number N of the gaussian
beam varies between zero and infinity . However, owing to the steepness
of the cutoff (-8/3), the Fresneb breakpoint will always (for weak tur-
bulence) be on the order of 2-n . The Fresnel breakpoint can be inter-
preted as denoting the temporal coherence length (in the presence of
the turbulence) for the source empl oyed. At this breakpoint (at beast
for plane and spher ical waves )

“- 2ir

or

f
I~
t .
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Figure 12a--Asymptotes for S2 spectrum.

The temporal coherence length is then simply

to 
= b/f j 1iv.

An expression for the breakpoint between the -8/3 and -11/3
asymptotes is obtained by setting

- ~ rr (ll/s)1
2 /i fw ~11/3

~
w
~) 

8 L rT4/3)j J a~~~~~~~~) 
( l 7 6a)

and sol ving for w/w0;

= 
3 1r(l1/6)12f~ - 3 Ir(ll/6) 1

2 
/21r[l+N2(l+c)2]

~ r (4/ 3)j Jç - ~ [ 
r(4/3) J J N . (l76b )
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This breakpoint frequency Is minimum for the collimated laser beam
-
~ N’l , and goes to Infinity in both limi ts as N-’-O and N’~°. From Equa-

tions (ll5d) and (149a) this point Is seen to be at

c~ 3 fr (ll/6) ]2 w(L)
N 1~ 

~ L r(4/3)J j~~

o r a t

~~~~ 
2W(L)

where W(L) is the receiver plane beam spotsize. The frequency of the
break point is -i ncreased (dec reased ) as the number of Fresnel zone
size patterns contained within an area the size of the receiver plane
beam spotsize increases (decreases). Thus the term

2W(L)/J~~
constitutes a beam size factor.

Figure 12b presents numerical values for the asymptotes when

N = 2 x

(177)

L0 
= 10 meters

and

J~t = 2.51 6x1O~~ meters ,

plotted from Equations (157), (171), and (175).
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Figure 12b--Typical numerical values of asymptotes
of S2 ‘spectrum.
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As a final result of the preceding asymptotic evaluation we
present in Figure 13 a composite of the Si and S2 spectra. The
slopes and breakpoints have been given earlier. In Figure 13 the
departure from a flat spectrum for frequencies below the Fresnel
breakpoint is a result of the detector being off—axis. Previous
authors [37][39] who always assumed an axially located detector pre-
dicted no such behavior. Other authors (85],(86] assumed that low
spatial frequency turbulence or system noise (for the case In
which the beam is being pointed by a servo-~ystem) gives rise to beamwander, which is equivalent to saying that r0 is a random variable.
However these workers were not concerned with the resulting effect
upon the temporal scintillation spectra.

This concludes the discussion of the asymptotic eval uation of
• the gaussian beam scintillation spectrum.

BEAM AXIS AND
DETECTOR ORTHOGONAL
TO WIND DIRECTION

“~ BEAM AXIS AND
DETECTOR COLLINEAR

3 WIT H WIND DIRECTION

S
OUTER SCALE FRESNEL
BREA KPOINT BREAKPOINT

LOG FREQUENCY

Figure 13--Asymptotes of gaussian beam spectrum.

0. Numerical Eval uation

This section is concerned with a numerical evaluation of Equation
(126) for the temporal scintillation spectrum. The computer programs
were written in Fortran IV and employed Gaussian quadrature inte-
gration techniques. Listings of these programs pl us brief descrip-
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tions are conta i ned in Appendix G. In addition to the numerically
calculated spectra, we also present computer generated plots of the
normal ized differential path contribution to the spectra, def ined
as

—l
1w S (w) 1 1w S (w ) 1

I U 1 O
~~Li (O ,Q,L)a5 -J L i (O,O, L)a 5 j

Presented In Figure 14 are the computer calculated spectra of a
clean gaussian beam for various cases. Note the simi l arity between
these curves and the curves in Figures l2a and 13. The decrease in
the magnitude of the spectra for the off-axis cases is due simply
to the decreased Intensity of the beam at these points. This figure
shows the spectrum resulting from a laser beam with Fresnel number
N “ 2 x i~3. Curves resulting from axial as well as off-axis point
detectors are included. Note that for rc = (x~,O) the low frequency
peak i s a t

w/w~ =,‘~~(1.O77/L~)

Now consider the differential path contribution to the spectrum.
To put things in perspective , Figure 15 shows the computer generated
differential path contributions for plane and spherical waves for
w/w 0 < 2rr . For the plane wave, the different ial path contribution Is
peaked at the transmitt~r. In contrast, the spherical wave dif-
ferential path contribution is peaked at mid-path . Figure 16 is the
same except for w/w0 > 2ir . In this frequency range, both the plane
and spherical wave differential path contributions are oscillatory.
These figures are to be compared wi th Figure 17 which shows the
gaussian beam differential path contributions for w/w0 < 2ir and
w/wo > 2ir. For this case the Fresnel number was on the order of 2 x
io~. From the results of the analysis wi thin this chapter it is seen
that the gaussian beam should behave as a spherical wave, yet when the
detector is off axis, the low frequency differential path contribution
appears to be that of a plane wave. That is the path contribution is
more heavily weighted towards the transmitter. This phenomenon has
important implications in situations where laser beams are propagated
between aircraft. For an off-axis detector the scintillation spectrum
will become sensiti ve to the outer scale of any turbulence localized
in the vicinity of the transmitting aircraft ’s fuselage. For suffi-
clently short outer scales (typically ~ 1 meter) [87] the Fresnel break-point at w/w0 

‘
~~ 2ir may easily be obscured.
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Figure 14--Typical gaussian beam spectra for axial
and off-axis detectors.
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Figure 17--Differential path contribution for gaussian
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This concludes the analys is for a clean gauss ian beam with a
point receiver. In the next section we will extend the results of
this and the previous section to incl ude the effects of finite de-
tector apertures and a finite inner scale.

E. Additional Topics

We now wish to extend the results of Section C to account for
two phenomena not previously mentioned , namely the effects upon the
scintillation spectrum of finite detector apertures and a finite
inner scale. The former effect is of interest because all physical ly
realizable detectors have a finite aperture. The assumption in
Section D of a point detector was merely a device used to simplify
the mathematics. However, we will demonstrate that, under certain
conditions , this is a reasonable approximation to reality . Inclusion
of a finite inner scale in the model of the index field reflects the
fact that the kinetic energy of very small scale index inhomogeneiti es
is dissipated in the form of heat rather than being passed on to
ever-decreasing scale sizes. From the discussion of phase gratings
in Chapter II, it is seen that the existence of a finite inner scale
requires that (for weak turbulence) the angl e of the bending ex-
perienced by light rays passing through the turbulent atmosphere be
bounded by

amax =

where A is the wavelength and Lo is the inner scale of turbul ence.

In Eq. (123) of Section C we could have easily included an inner
scale cut—off in the expression for the power spectrum of the index
fluctuations [711;

Ofl (K pK~~,K
3) = 0.033 C~ [K 2 + (1.O77/L0)

2]~~~
/6 e

km) 
, (179)

where
2 2 2 2

K K
1

+ K
2

+ K
3

= [O.O33irr(5/3)] 3”4 = 5.92

and is the inner scale of turbulence.
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Inclus ion of thi s inner scale dependence resul ts in an addi tional
- term in the integrand of Eq. (125) of the form

_ [K12+(w/wo)
2]

exp 
(/

~
tK

m)
2 (180)

Inspection of this term shows that the inner scale will produce a
gaussian roll-off of the scintillati on spectrum in the vicinity of

• F 92 . (181)
o

For a Fresnel l ength on the order of the inner scale (t0’l0
2-10 3m)

- this effect could easily dominate the high frequency behavior of the
scintillation spectrum. If for exampl e the range, L, is one kilo-
meter , the source is a hel ium-neon laser (A= .6328xl0-6m) and the
inner scal e, 

~~~~
, Is one millimeter then the scintillation spectrum

will exhibit an nner scale effect for

> 150 >> 2ir .

S Or for a velocity , v , of 150 meters/sec ., inner scale effects would
begin at

f “
~ v/20 

= 150 KHz.

Finite aperture effects are determined by defining the receiver
aperture as

11 ; i 9< D/2w(~) = (182)

where D is the diameter of the photosensitive area of the detector.
For a spherical wave (chosen because the integrations are easily
performed in closed form) the H function is given by (see Equation
(8gb)
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H(z ,K ’,W ) = 1E01 2 e 2k 
fd~~WG) ~~~~~

- iz( l-z ) LK ’2
= e 2k 

J
d~ p J d~ e

1 ’
~~

0S
~~~

0) (183)

or finally

D 2 2J 1(z ~ - K ’) - i z(1-z)LK ’2
H(z ,~ ’ ,W) = 1T(2

) 
1E 01

2 
(z s - K ’

) 
e 

2k 
. (184 )

The scintillation spectrurn~ from Eq. (92), is then

Sp(w) a J d z  J d c  [K2+(w/w 0)2+(1 .O77 /L~)21~~~
’6

x s in2{~~
;
~ [K2+(w/W )2

]}[

2
~1~~ ~~~~~~~~~

0)

2

)] 
. (185)

z 
~

,j, +(~~ /W~~)

Within the high frequency region we can approximate the sin2 function
by 1/2, extend the z integration to infinity[88], and perform the K

• integration to obtain

-11/3
Sp(w ) a 

~~ (
~

) . (186 )

Similar results are to be expected for pl ane or gaussian beam waves .
The onset of this so called aperture averaging phenomenon may be de-
termined by equating the formulae for the -8/3 asymptote (derived
under the assumption of a point detector) anc~ the -11/3 asymptote
for a finite aperture. -
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This aperture averaging region can also be discel’ned by physical
arguments . At the receiver we observe a series of diffraction pat-
terns of various sizes , ~~, flowing in the direction of the wi nd at
velocity v. The associated temporal frequency at the output of the
detector will therefo re be

f = v / ~

or
- - w 2 ~ • (187)

w~~ 

~~~
However for an aperture , 0, larger than the dimension PL , the detector
wil l integrate over these diffraction patterns [621 thus attenuating
the effects of this scal e size . Aperture averaging would then occur
for frequencies such that

2ii (188)

Therefore aperture averaging shoul d be of little concern if we require
that the aperture diameter be much smaller than the Fresnel zone;

0

As an example, for a one kilometer range , a HeNe source, and a one
centimeter receiver aperture, one would expect to observe aperture
averaging for

> 16

Al ternatively, for a vel ocity of 150 meters /sec ., aperture averaging
- would occur for frequencies

f ~ v/D = 15 KHz.

On the basis of arguments presented in this section it is seen
that if we require

~o’° 
<< JA L , (189)

- 
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- 
- then the inner scale effects and aperture averaging effects should be

of little concern in the determination of the scintillation spectrum .
This concludes the analysis of the temporal scintillation spectrum
of a clean gaussian beam.

— F. Sumary and Conclusions

Within this chapter we have presented an eva l uation of the
temporal scintillation spectrum of a clean gaussian beam f~r the
case in which the detector is off-axis to the beam . The off-axis

- 

• 
detector problem has not been previously treated in the literature .
The general formula for the spectrum derived in Chapter II , was
empl oyed in conjunction with a particular model of the index of
refraction spatial spectrum , pl us the assumption of an off-axis

- point detector, in deriving an expression which was then evaluated
asymptotically and numerically. As a result of the analysis it was
shown that the fact that the detector was off axis produces some in-
teresting outer scale-dependent behavior for frequencies below the
Fresnel breakpoint. In addition , this low frequency behavior was
shown to be dependent upon the location of the detector with respect
to the beam axis and wind direction .

- Section B was concerned with setting-up the problem. The von-
Karman model of the index spectrum together with a gaussian beam source
field were used in the expression for the spectrum derived in Chapter
II. The assumption of a point detector enabled performance of the
integration for the H function of Chapter II. The fina l expression
for the scintillation spectrum was demonstrated to reduce to that
which was deri ved by other authors when the detector was axially
l ocated, as wel l as to the expressions for the plane and spherical
wave scintillation spectra when the beam Fresnel number was allowed
to go to zero and infinity respectively.

In Section C the expression for the spectrum was evaluated . The
first portion of the section was devoted to developing analytic ex-
pressions for the spectrum of a gaussian beam with arbitrary Fresnel
number. Expressions for the spectrum in terms of hypergeometric

F functions were developed and asymptotic behavior (for high and low
frequencies) was determined by retaining only the first few terms
of the series expressions for these functions . Under certain con-
ditions it was found possible to determine closed form expressions
for the spectrum asymptotes.

Section 0 was devoted to a computer evaluation of the spectrum
for a particular beam Fresne l number , and a variety of detector
locations. In addition , differential path contri bution plots were
presented for plane and spherical waves , and for gaussian beams
with off-axis point detectors.
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As a result of this section it was shown that for the detector
and beam axis along a line collinear wi th the wind direction , the
scintillation spectrum displ ayed a peak at w/~0 = /~(l.O77/L~) wi th• a +2 power law for frequencies below and a -2/3 power law for fre-
quencies above this point. For the detector and beam axis along a
line perpendicular to the wind direction the spectrum showed a break-
point at w/~0=l.077/L~, wi th a -2/3 power law for frequencies abovethis point.

The differential path contribution plots showed that despite
- the fact that a gaussian beam may be well wi thin the Fraunhofer zone

(N >1), the off-axis detector causes the path contribution to be
peaked at the transmitter (as it is for a plane wave) rather than
at midpath (as it is for a spherical wave). This effect has important
implications (as will be demonstrated in the next chapter) for cases
in which the turbulence strength is non-unifo rm along the propagation
path. 

-

- In Section E the analysis was extended to describe finite inner
scale and finite aperture effects. Through mathematical and physical
arguments it was demonstrated that if the inner scale and the !pertu re

- 
diameter are much smaller than the plane wave Fresnel zone (d xL) then
their effects can be ignored .

Throughout this chapter the off-axis distance and orientation of
S the detector have been assume d to be deterministic. For the case in

which the laser beam is being steered by a servo system however, these
variables coul d easily be considered random . By assuming appropriate
statistical distributions for these variables it woul d then be possibl e
to determine the effects upon the scintillation spectrum of servo
tracki ng error or noise.
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CHAPTER IV
THE DIRTY GAUSSIAN BEAM

A. Introduction

The purpose of this chapter is to develop a model of a dirty ,
i.e., spatially corrupted laser beam, and to determine the effect
upon its scintillation spectrum of the laser beam being dirty . This
objective is pertinent because laser beams sometimes do not have the
perfect spatial properties which most analytical studies presume.
Even if the beam does have good spatial quality , many situations
require it to be passed through a window , for example on an aircraft .
This unavoidably introduces a certain amount of deterministic spatial
noise into the phase and/or amplitude of the beam.

The configuration chosen for analysis within this chapter is that
of a clean gaussian beam shining through a window whose transmission
function is assumed to be unity except wi thin a small axially located
spot where the phase of the incident beam is shifted slightly. This
model is appropriate for the situation in which the laser beam is
transmi tted through a window on which there is an oil spot or an

S imperfection.

Instead of calculating the actual receiver plane fields due to
such a configuration, (as required by the general formula for the
scintillation spectrum which was derived in Chapter II) the field
insuediately past the window is expanded in a two dimensional series of
functions involving Gauss-Hermite polynomials. The particular formula-
tion used enables the receiver plane fields to be written down imedi-
ately without having to resort to performing the diffraction integrals.
Since the size and phase of the spot are chosen a priori , and we w ish
to use as few terms of the polynomial expansion as possible , an optimi-
zation procedure for approximating the fields behind the window is
presented.

The integral expression for the scintillation spectrum resulting
from our formulation of the dirti’ beam problem is eval uated numerically
and the results presented as a series of plots. As a result of the
analysis the dirty beam ’s scintillation spectrum is shown to be
sensitive to turbulence l ocal ized in the vicinity of the transmitter.
This sensitivity gives rise to low frequency behavior similar to that
demonstrated in Chapter III.

In Section B the dirty beam representation is formulated . The
dirty beam Is modeled as a clean gaussian beam which has been trans-
mitted through a window having a unity transmission function except
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for a small axially located spot where the transmission function is
complex . The fields to the ininediate right of the window are expanded
in a complete orthonormal free-space eigenmode set [90,91]. These
functions which closely describe the modes of an optical resonator
(i.e., a spherical mirror laser) are exact eigenfunctions (within the
paraxial approximation) of the free-space wave operator. Therefore an
arbitrary field may be expanded in some plane in terms of these func-
tions. The functions then can propagate i ndependently to any other
plane and be reassembled with the known weights to determine the
actual field. This property of the Gauss-Hermi te polynomial expansion

• is employed in the evaluation of the general expression developed in
Chapter II.

By use of Babinet’ s principle [92] the dirty spot is essentially• expanded in terms of a truncated series of laser modes. Since this
series is truncated , we present a procedure for optimizing the approxi-
mat ion.

A particular case of the dirty beam problem is treated in Section C.
- The required integrati ons are carried out numerically for a variety of

detector locations and turbulence strength distributions and the
results presented in the form of several plots of spectra.

Sec tion D conta ins a sumary and conclus ions.

B. Development of Model

This section is concerned with the formulation of a model of the
dirty beam and an optimization procedure for approximating it in terms
of eigenmodes of the free space wave operator.

We shal l first demonstrate the use of this particular eigenmode
expansion as a means of expressing an arbitrary field. The specifi-
cation of a general field in terms of the Gaussian-Hermite polynomial
functions is written as [91]

• E(x,y,z) = a~~ fm(x,Z~~o
) fn(Y,z+zo) (190-a)

-
• 

m=0 n=0

where the f functions are defined as

- -  fm(
~
(,

~~
Zo) = 

(~~ ~~~
.) 

¼ 

(2~m !Y~ 
[l_iN (z+z0)/L]m’2

_________ 
-ct (z+z )x 2

X [1+IN(Z+Z0)/L] m+l)/2 Hm(/2ar(Z+Zo) x) e (190—b4
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(z+z ) = kN/2La 0 l+iN(z+z0)/L ‘

ar (z+zo ) Re{a(z+z 0)}  , (190-c)

is the mth order Hermi te polynomial [93], N is the beam Fresnel
number defined in Equation (ll5b), and the beam waist is l ocated at

• z=-z0. Making use of the orthonormality [94] of the mode functions

J~~
dx fK(x ,z+zo) ft(x,z+zo) = óKL (191)

gives the expansion coefficients

= if dxdy E(x,y,z) f~(x ,z+z0) f~(y,z+z0) . (192)

The field of a spheri cal mi rror laser operating in the l owest order
transverse spatial mode nominally consists of only the zero-zero
eigenmode. If we arbitrar ily assume

lir; m ,n 0
S 

~ 
=i~~ 

(193)
( 0; m,n~O

then the field is simply

kN/2L 2 2
- l+1N(z+z )/L (x +y )

E(x ,y,z) = 
l+iN (z+z0)/L 

e (194)

Wi th the exception of the trivial phase factor exp[ik(z+z0)],
Equation (194) is recognized as the expression for the field used in
Chapter Iii (Equation (115a)). Throughout the remainder of this chapter
we assume that the unperturbed laser beam is described by Equation
(194).

We now proceed in the development of a particular model for the
dirty laser beam.
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With reference to Figure 18, we define a circular region at the
z=O plane (the plane of the dirty window ) wi thin which the field of
Equatior~ (194) Is corrupted.

S -
~~~~~ ~~

/~ 3 k
Figure ~8--I11ustration of phase obstacle.

To the inuiiediate right of the z=0 plane the field is

E(x ,y,0~)D
~(x-x~

,y—y5) (195—a)

where the window transmission function, D6 is given by

[A e~ ;flx_x5)
2+(y_y~)2 < 6/2 (195-b )

06(x-x 5,y—y5) = ic

[1 ; elsewhere , S

6 is the diameter of the circular region and the field is given by
Equation (194). Equivalently by use of Babinet ’s princip le we may
express the field within this plane as

E(x,y,04) — [l-D6(x-x5,y-y5)]E(x,y,0~) (196)
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or by defining a new var iab le , D~,

E(x,y,0~) - D~(x-x 5,y-y5)E(x ,y,0~) . (197)

In the mater ial to follow , we shall define the complementary field as

EC(x ,y,0+) = D~(x-x~,y-y5)E(x,y,O~) (198-a)

where

11—A ellA ;J (x — x 5 )2+(y—y 5 )2 < 6/2
D’ = 4 . (198-b)6 

~o ; elsewhere

As an example consider the case in which A=0. Then the comple-
mentary field is

— rE(x,y,0÷) ;I (x-x )2+(y~y5)
2 

< 6/2
EC (x ,y,0~ ) = I S 

. (199)

L o ; elsewhere

Within the region to the invnediate right of the disc, the complementary
field exactly cancels the incident field.

The eigenmode ex pans i on w i ll now be appl ied to the complementary
field:

EC (x ,y,z) = 
~ 

1mn ~~~~~~~~~~~~~~~~~~~~~ , (200-a)
m=O n 0

where the mode functions are given by

g,~(x ,z+z~) = (2 kM)¼ (i )
½ 

~1_iM (Z+Zl),L]
m/2 

2
—~~ +l’’2x [1+iM(z+z1)/L] ~m “ Hm (i2Br (z4

~~iTx ) e ( 200-b)
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~(z+z ) - kM/ 2L
1 1+iM(z+z1 )/L

Re{~(z+z1)} (200—c)

M is the Fresnel number of the complementary beam defined as

M = 
AL 

, (200-d)

and W 1 is the spotsize of the beam waist which is located at z=-z1 .

- 
In Appendix F we approximate the complementary field by the zero-

zero term of its eigenmode expansion. This approximation is optimized
by minimizing the integral square difference between the actual comple-
mentary field and its truncated series approximation.

Also in Appendix F we justify the claim that wi thout loss of
generality we can assume the phase obstacle to be axial ly located with-
in the incident (n’~in) beam. This is subject to the conditi ons that

S the detector be near the center of the main beam (r0 << W(L)) and that
the receiver be in the far field of the main beam.

As shown in this appendix the complementary beam mode expansion
coefficient, y00, is given by

= ~JTW0W1(l-A e’~ )

I _ [c
~(z~)+~*(z 1)] (6 /2) 2 1..

x 1 - e (201-a)

and the complementary beam Fresnel number and beam waist l ocation are
gi ven by the solut i on of the s imul taneous equati ons

Im{cg (z0)} = Im{~ (z 1)} (201—b)

and

x = ~n [1_2xY (~~)] 
- 1 (201—c)
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where

~ 
(z)~~

X = 
a
r(c)

and

y = ar (zo ) (
~
)
2 

.

Wi th the complementary beam thus completely specifi ed, we may proceed ,
in the manner of the devel opment of Chapter III , to calcula te the H
function. The exception is that the expression for the field in
Equation (89-b) is replaced by

E(x ,y,L) — E~(x,y,L) . (202—a)

S In our case L=0, and the total field assumes the form of the difference
of two gaussian beams:

E(x,y,L) - E~(x,y,L)

-cs(L+z0)(x2+y2) -~(L+z1 )(x 2+y2)
W0ct(L+z0)e - W 18(L+z1)e

___________ 

.
~ 
I _[a(Z~)+~*(Z1)](6/2)21

2W0W1 a(z0)+~*(z 1 ) 
(l-Ae lA ) 

J 2o2~b

This completes the discussion of the modeling of the dirty beam
and the optimizati on of the f ield expansion . These results w ill be
applied in the next section to the calcula tion of the scintillation
spectrum of a particular dirty beam.

C. Evaluati on
The modeling of the previous section was applied in the calcu-

lation of the scintillation spectrum for a particular configuration ;
that of a laser beam wi th a central phase perturbation . The spectrum
resulting from this field configuration was calculated for three tur-
bulence models; homogeneous turbulence with a large outer scale,
local ized turbulence with a small outer scale, and a combination of S

these two. The detector was assumed to be off-axis.
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We evaluated the spectrum resulting from th~ situation tn which a
laser beam with wa is t s potsi ze (W0 ) of 20.6 x 10° meter was directed
through a dirty window toward a receiver approximately one kilometer
distant. The beam waist was located one meter inside the wi ndow, and
the beam was assumed to have propagated In free space until It passed
through the wi ndow into the turbulent atmosphere. The phase and dia-
meter of the spot on the window were chosen so that its receiver plane
diffraction pattern consisted of a dark spot approximately one meter in
diameter. These parameters were respectively lA•5.336 radians and 6.917
x l0” meter. The values of these variables were deduced by numerical ly
calculating the receiver plane diffraction patterns of obstacles of

- various phases and diameters . Although this procedure supplied the
receiver plane fields as required by the general formula for the scin-
tillation spectrum , the computations were lengthy and time consuming .
Therefore we resorted to the approximation of the complementary field
as outlined in the previous section .

S The routine of the previous section gave, for the complementary
beam, a waist spotsize, W1, of 3.146 x 10~~ meter and a beam waist

- loc~t1on , -21, of -.408 meter, For the Hel ium-Neon laser (X. 6328 x
i0° meter) the compIe~entary and maip beam Fresnel numbers wererespectively 2.04 x lO’~ and 4.75 x 10~, and the receiver pl ane spot-s izes were W1(L) .64 meter and W0(L) • 9.79 meters. The parameters
of interest are illustrated in Figure 19.

/
“MAIN BUM

2W 1

~~~~~ 
•
~~~i~~~

•

MPLEM C NTA 

~

~N\ ~~~~ W INDOW

Figure 19--Sketch of transmitter plane fields.
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With the beam waist locations and spotsizes for the main and corn-
- 

plementary beams determined, the fields required (see Equation (202b))
in the calculation of the H function, and hence the spectrum , were
specified. In calculating the H function (Equation (8gb)) a point
detector at a general location , r=r0, was assumed . -

‘

A digital computer was employed in performing the path and fre-
quency Integrations of Equation (92). For the path integral a single
eight or 32 point Gaussian quadrature [95,96,97] routine was used.
Composite integration [98] using eight point Gaussian quadrature

• routines was used for the frequency integral. A listing and brief
discussion of this program is contained in Appendix G.

Figure 20 shows the spectrum resulti ng from the dirty beam for
an outer scale , L0, of 100 meters and the detector positioned at r0 =

S 
(0,.8&n). This spectrum is indistinguishable from the spectrum of a
clean gaussian beam (see Figure 14 in Chapter III). Little effect of
the beam being dirty was to be expected because of the extreme distance

- of the detector from the diffracti on pattern of the phase obstacle S
(r0/W1(L)=l.4), and because the detector was still close to the axis
of the main beam (r0/W0(L)<< l).

In Figure 21 we present the spectrum resulting from the same
conditions as for Figure 20 except with the detector located at r0=
(O,.44) (r0/W1(L)=.7). The low frequency behavior , w~ich is character-
ized by the break point in the vicinity of w/w~ = 10 , i s the same as
that shown in Chapter III for the off-axis detector. In this case
however, the low frequency behavior was due to the detector being off-
axis to the complementary beam, not the main beam . 

—

The spectrum resulting from a different turbulence distribution
is presented in Figure 22. In this case the outer scale was one meter
and the detector location was the same as in Figure 21 , however the
turbulence structure parameter was specified as

C~(z) = 
(~Jc~ 

e~~~m) , 0 < z < 1 , (203 )

where z,~ was 10 meters . This turbulence strength distribution would
be appr~priate for a situation in which all the turbulence was confined
to a 10 meter thick region , i.e., boundary layer at the transmitter.

From the discussion in Chapter III of the spectrum differential
path contribution we deduce that the complementary beam (because of
the off-axis detector) interacts more strongly with the turbulence
localized near the transmitter than does the main beam. This thought
is reinforced by the order of magnitude difference between the low fre-
quency portion of the spectrum in Figure 22 (due primarily to the
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Figure 20--Spectrum for detector off-axis by a large dis tance.
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Figure 21--Spectrum for detector near di ffraction pattern.
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Figure 22--Spectrum for localized turbulence.
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complimentary beam ) and the portion of the spectrum to the immediate
left of the Fresnel breakpoint (due to the main beam).

A more realistic model 0f the turbulence field would contain
homogeneous turbulence as wel l as a boundary layer at the transmitter.
This would correspond to the situation In which the laser beam was
being directed between two aircraft. In fact, to be totally realistic ,
we should include a boundary layer at the receiver. However , the dif-
ferential path contribution plots of Chapter III have shown the Insen-

— sitivity of the sci ntillation spectrum to such a turbulence distribu-
tion. Therefore the receiver pl ane boundary layer can be ignored .

Figure 23 shows the spectrum resulting from a combination of
local ized and distributed turbulence strengths . For this case the S

turbulence field model used was
t’

• c~ 
a a ~ m/[K2 + (l.077/L61 )2]

~~
”6

+ 8[~2 + (1.077/L62 )2]_ lh /6 , 0 ~ z 1 , (204 )

where the outer scales , L~1 and L02, were respectively one and 100
meters, the e point of the loceflzed turbulence was ten meters and
the weights a and B were chosen subject to the restraint

~~ J du C~(u) • 1 . (205)

The restriction of Equation (205) was imposed merely to facilitate
direct comparison of Figure 23 with the previous results of this
chapter and Chapter III. It requires the path integral of the tur-
bulence strength to be a constant. The turbulence model of Figure 22
also satisfies Equation (205). For the spectrum in Figure 23 we chose
8•.05. Equation (205) then gave a•95, for a ratio of roughly three
orders of magnitude between the turbulence strength in the boundary
layer and that in the distributed turbulence. Also indicated in
Figure 23 are the two outer scale and two Fresnel breakpoints which are
due to the two turbulence strength distributions. This figure Is
illustrati ve of the increased sensitivity , of the dirty beam scinti l-
lation spectrum, to an inhomogeneous turbulence distribution .

Shown In Figure 24 is the spectrum resulting from a different
combination of localized and distributed turbulence. For this case
we used
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Figure 23--Spectrum for combination of localized and
distributed turbulence.
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L01 • 1/2 meter [87]

L02 • 100 meters

zm • 20 meters [99]

a 47.5

B •0.05

• for a ratio of about three orders of magnitude between the localized
and distributed turbulence strengths. Also shown in this figure are
some typical experimental spectral data (indicated by the points )
derived from the ALP program (run 7 of flight 72). The experimental• spectra were calculated from data obtained by directing a laser beam
through an aircraft window towards another aircraft one kilometer dis-
tant. The beam waist, located one meter Inside the window, had a
spotsize of 20.6 x 10-6 meter. Figute 24 demonstrates the ability of
the dirty beam model to predict the low frequency breakpoint, if not
the slopes, which are found in the experimentally obtained spectra.

This concludes the analysis of the temporal scintillati on spec-
trum of a dirty gaussian beam.

D. Summary and Conclusions

This chapter has consisted of two basic parts. The first part
was devoted to developing a model of a dirty laser beam, i.e., a laser
beam blemished in a spatial sense. In the second part the scintilla-
tion spectrum of a specific dirty laser beam was calculated . The
analysis showed the scintillation spectrum of the dirty laser beam to
be sensitive to turbulence localized in the vic inity of the transmi tter.
An example of this localized turbulence would be the turbulent boundary
layer near an aircraft fuselage. The combination of dirty laser beam
and localized turbulence gave rise to the low frequency effects
described in Chapter III.

A model of the dirty laser beam was developed in Section B. The
spatial corruption Of the laser beam was modeled as arising from the
beam ’s being transmitted through a window whose transmission function
was unity except within a small axially located region where the phase
of the incident beam was shifted slightly. Using Babinet’s Principle
the equivalent fields were expanded, within the transmitter pl ane, in
a series of elgen-modes of the free space wave operator. This expan-
sion enabled the receiver plane fields to be written down immediately

S by inspection.
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The phase and diameter of the phase obstacle were assumed to have
been chosen a priori and an optimized expansion was developed which
min imized the integral square error between the actual complementary
field and its truncated series approximation. This optimization scheme

- 

• was used to approximate the complementary field by its lowest order
eigen mode so that, essentially the dirty beam consisted of the weighted
sum of two gaussian beams.

Section C of this chapter dealt wi th a computer evaluation of the
scintillation spectrum of a particular formulation of the dirty gaussian
beam. Analyses were provided for three different Index of refraction
spatial spectra: 1) homogeneous turbulence with a large outer scale , 2)
local ized turbulence with a small outer scale, and 3) a combination of
these two . The third turbulence distribution is appropriate when the
laser beam originates from an aircraft. Experimental evidence [87]
supports this assumption of a turbulent boundary layer typified by
outer sca les on the order Qf one meter or less. The results of the
evaluation showed that the scintillation spectrum of a dirty beam dis-
plays behavior simi lar to that of a clean laser beam with an off-axis
detector. In addition, it was demonstrated that the scintillation
spectrum of a dirty beam can display increased sensitivity to inhomo-
geneous turbulence strengths.

This completes the analysis of the scintillation spectrum of a
dirty gaussian beam. Al though the model developed herein was a simple
one, we have shown it to qualitatively describe a much broader class of
situations. In practice, an actual laser beam may be expected to con-
tain a much more complicated spatial noise component. However, we have
demonstrated that the scintillation spectrum is largely independent of
the actual structure of this spatial noise.

In the next chapter we shall summarize the work presented in this
and the preceding chapters, and present additi onal discussion and com-
ments.
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CHAPTER V

SUMMARY AND DISCUSSION

A. Summary and Conclusions

The effort described herein was aimed at developing a simplified
• formula for temporal scintillation spectra and applying it to the

analysis of the scintillation spectrum of a dirty, i.e., spatially
corrupted, laser beam. The major accomplishments of this work were:

1) the derivation of a general but very compact expression
for the temporal scintillation spectrum of an arbitrary
extended source,

2) interpretation of the scintillation spectrum formula in
terms of a phase grating model of the index of refraction
field,

3) asymptotic and numerical calculation of spectra for a
gaussian beam with an off-axis detector,

4) modeling of a spatially blemished laser beam, and

5) quali tative but not exact quantitative agreement between
theoretically predicted and experimentally obtained
scintillation spectra.

Use was made of the so-called Extended Huygens Fresnel integral
to derive a formula for the temporal scintillation spectrum of an
arbitrary source. This expression was in terms of the second order
spatio-temporal statistical moments of spherical waves . Expressions
for these statistical moments were derived by the method of smooth
perturbations, the weak turbulence approximation was employed , and
various observations made, to produce the final expression for the
spectrum . This final formula for the scintillation spectrum was in
terms of the free-space receiver plane f ields of an unspecif ied

- extended source, and In terms of an extended receiver. A phase grat-
ing model of the atmospheric turbulence field provided an interpre-
tation of this expression.

The general formula was used to derive an expression for the scm-
tillation spectrum 9 f a clean laser beam with an off-axis point detec-
tor. A thorough asymptotic evaluation of this expression , valid for
arbitrary beam Fresnel number, was provided and numerical results
were given from a computer evaluation for a typical gaussian beam.
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As a result of the analysis It was shown that, by moving the
detector off-axis to the beam, an additional breakpoint or peak
(depending upon the relationship of the detector and beam axis wi th
respect to the wind direction) was introduced in the spectrum at a

• frequency below the Fresnel breakpoint.
• The dirty laser beam was envisioned as arising from the propaga-

tion of an initially clean gaussian beam through a window and then
into the turbulent atmosphere . The wi ndow ’s transmission function
was assumed to be unity except wi thin a small axial region in which
the Incident field was shifted slightly in phase. Babinet’s principle

-
S 

• was used to calculate the equivalent transmitter plane field which was
then expanded in a series of eigen modes of the free space wave opera-
tor. This expansion enabled the calculation of the free space receiver
plane field, as required in the general formula, by inspection rather
than by performing the diffraction integral over the transmi tter plane
field. The series approximation to the transmi tter plane field was
truncated. A procedure therefore was given which optimized the
expansion.

This modeling procedure was appl ied to the description of a par-
ticular dirty beam and the resulting expression was evaluated numeri-
cally on a digital computer. The results showed the dirty beam scin-
tillation spectrum to be sensitive to turbulence in the vicinity of
the transmitter despite the fact that the beam Fresnel number was very
large. Specifi call y, the spectrum displayed a low frequency outer
scale dependent behavior like that of a clean gaussian beam with an
off-axis detector. It was demonstrated that this particular model of
a dirty laser beam qualitatively predicts the scintillation spectrum
of a much more complicated dirty gaussian beam.

B. Discussion

The general formula for the temporal scintillation spectrum is
of significant worth because of its simplicity, flexibility, and easy
interpretation. Its principle utility is in predicting the spectrum
for complicated extended source fields (for exampl e the field of a
laser with cassegrainian optics, or a spatially noisy laser beam) and
for complicated receiver apertures. Wi th this formula it is possible
therefore to easil y predict the scintillation spectrum under realistic
conditions rather than the highly ideal ized situations which other
analyses presume.

The major limi tation of our formula is its restriction to the
weak turbulence regime. Thus one of the suggestions for future
analyti c work concerns its generaliza tion to the strong turbulence
regime. There are two methods by which this problem may be attacked.
First, expressions for the spherical wave Statistical moments could
be found which are valid wi thin the multiple scattering domain,
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Second, an heuristic derivati on, In the manner of Section E, Chapter• II, using a phase grating model of the turbulence field could be
attempted.

Another topic of further analytical effort could be the consider-
ation of the detector location as being a random function of time.
This Is equivalent to the laser pointing directi on being a random
variable. Under the assumption of an appropriate stati stical behavior
for the detector location, it should be possible to determine the
effect upon the measured tempora l scintillation spectrum.

• Throughout this paper we have assumed the spatial noise structure
of the initial laser beam to be non-periodic. Perhaps a more rea!istic
model of a dirty laser beam should also contain a certain amount of
periodic spatial noise. This situation would be encountered when the
laser beam Is passed through a wi ndow and is multiply reflected at the
two surfaces .

For future experimental effort we have a number of suggestions.

The easiest experiment to perform would be aimed at veri fying
the predicted low frequenc y behavior of the spectrum due to an off-
axis detector. This should be a simple method of determining the
outer scale of turbulence .

In case the laser beam is being aimed by a pointer-tracker, it
would be interestin g to calculate the temporal powe r spectra of the
servo system error signals.

Finally, we suggest a closely controlled experiment in which the
source field is perturbed in a known manner. The resultant data
should provide Information on the routinely encountered problem of
a dirty laser beam.

116

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - •~~ --~~~• - - -



TT-~~~~~~~~— -~ -~~-”---•--- - -
~~~~~~

- - - - - - - ‘ - - -
~~

-- -
~~~

APPENDIX A

THE EXTENDED HUYGENS~.FRESNEL INTEGRAL

This appendix Is devoted to a discussion of the application
of the Green’s function technique to the problem of propagation with-
in a randomly inhomogeneous medium. In the literature this general-
Ized Green’s function technique Is commonly referred to as the
Extended Hu,ygens-Fresnel Principle. -

It can be demonstrated (100] that at optical frequencies
(wavelengths much shorter than the Inner scale of turbulence)
polarization effects are negligible. We are therefore j ustified
In employing the scalar form of the wave equation.

• 0, (A-i )

S 

when, th Index of refraction is a random function of position. We
now propose the existence of a Green’s function such that

(V 2+k2n2(~))G(L~’) • -4d( 
~~
-

~~
‘ I) . (A-2)

B~~1eft-multiplyIng Equation (A~l) by G(~j ’) and Equation (A-2) by
E(R), subtracting the two resulting equations , and integrating over
the scattering volume we obtain

• 4wJ d~ E(~)~(I~-~’I) • 4ivE(~~) . (A-3)

Figure 1 Illustrates the geometry of Interest. Point P0 denotes the
source point and 

~i 
the field point, E and t’ the surfaces bounding

the scattering volume v and N the outward directed unit normal to
the surface.

If the first and second partial derivatives of G and E are
single valued and continuous on Z and E’ we can make use of Green’s
second identity, which when applied to Equation (A-3) yields
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Figure A-i--Illustration of variables pertinent to- 
S Green’s function technique.

= 

~~ I ~~~~~~~~~~~~~~~~~~~~ dA. (A-4)
E+E ’

The component of the gradient operator in the direction normal to thesurface we shall denote as

v( ) . ~~~a () (A-5)

so that Equation (A-4) may be written

E(~’) 
~~ 1E+E ’ 

[G(L~”) ~~ E(~)-E(~) ~~G(L~~)]dA (A-6)

Ass uming that E(~) satisf ies the Sommerfeld Radiation condition [101],
so that the integral along E ’ can be neglected Equation (A-6) becomes
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~~ J[G~~~

_ E~~ )ds . (A-7)

where In the Interest of notational simplicity we have dropped the
explicit dependence of E and G upon R~ and R’ .

For the field of a point source

kR
S E(~) = (A-8)

the partial derivative normal to the surface E is

aE _ 1. 1\aR
~~~~~~~

- E~ik - P.~7iFi . (A-9)

If we assume R >> 1/ k, i.e., the surface ~ is many wavel engths
removed from the point source at p0, then we have

~~ ~ lkE(~) }~ 
. (A-b )

Using the notation

~~- = - R • z , (A-li)

in which the circumflex accent denotes a unit vector, we have

-ikE(~ )R .

We now claim [41] that the generalized Green’s function can be
expressed as

—— e~~’’~~~ 
I÷*(L~

’)
G(R,R’) = 

— 
(A— 13)

where ,p Is a complex function arising from propagation through the
inhomogeneous medium . The perturbation, ~~, to the field of aspherical wave is obtained by solving the scalar wave equation
(Equation (A-l)) for the Green’s function, G, rather than for the
field, E. However, for the purposes of this discussion, we need
only to bound the magnitude of t~ . This task is easily accomplished
by inspecting • within the geometrical optics domain (1~t c  Lo).
Under this condition we find that [41]
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= 1k J n1 (s)ds (A— 14)

where
s=

and we have used Reynold’ s convention [102] on the index field

n(~ ) n1 (R) +< n(~)> = n1(~) + 1.

The generalized Green’s function as gi ven by Equations (A-13) and
(A-14) can be shown to satisfy the homogeneous wave equation (A-i)
if the term proportional to vnl is neglected . (The polarization
term [100] in the wave equation, which is a function of vn1 , wasneglected In obtaining Equation (A-i).)

Now the partial derivative of the Green ’s function is given by

aG ... If l \~ s a*1-

~~~~~ 

- G ~~ k - + . (A-l5)

For s >> 1/k Equation (A—l5) is

1as 1 a*
511 ’

~~~~ 
ikG

J~~
-+- 1j~~~] 

. (A-l6)

Within the geometrical optics domain

3~i ~ fi (5)C~ =}
~ ~s J n~(s)ds

Tk~~~~1~ ~~~~ 
(A-l7)

Since

I
-I-v ‘5

~~~~ 
‘~‘Ifll

(5) I 1 , (A—18)

and ~~~~~~~~~ 1 , Equation (A—15) becomes

~ -ikG(L~’) • z, (A— 19)
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where we have defi ned

With Equations (A-l2) and (A-l9) the expression for the field
at becomes

E(~ ’) = - 

~- J G(L~’)E(~ )(R .z - 

~ )dA. (A- 20)

If we make the paraxial approximation , i.e., restr ict our attention
to small angles wi th respect to the axis of propagation, we can

S approximate the obliquity factor [103] and the Green ’s functions
respectively by -

R.z - s.z%2

and

1kI~-Th I-’ip(
~J’)

L

With these approximations Equation (A-20) becomes

E(~’) =j -~~J ~~~~~~~~~~~~~~~ d~ . (A-2b )

Equation (A—2l ) is the final result of this appendix.

Al though in the preceding discussion we restricted our attention S

to the case in which 4, was purely imaginary , it is in general complex.
This approximation was merely a device to enable the neglect of the
term involving the partial derivative of ~~. The actual expression
for ip is obtained by solving the scalar wave equati on for the gener-

• alized Green ’ s function. This Green ’s function is simply the field
(which has been perturbed in phase and magnitude due to propagation
through the turbulent atmosphere) Of a point source. An approximate
expression for the complex phase perturbation, 4,, is derived by S

Tatarski [52].
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Equation (A-2l) is actually more general than it would seem
from our derivation. This formula states that the field at W’ is

• jiven merely by the convolution of the source field, at the surface
R’, wi th the general ized Green ’s function. Stated an~Ther way, thefield at R’ is due to the linear s~perposition of the elementary
wavelets originating at the plane R.
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APPENDIX B

DERIVATION OF THE SPHERICAL WAVE FIRST ORDER
PERTURBATION SPATIAL SPECTRUM

In this appendix we shall supply the missing steps between Equati ons
(45) and (46) of Chapter II. The beginning point is Equation (45) which
relates the spatial spectrum of the complex phase perturbation 4, to the

- - 
• spatial spectrum of the index fluctuations v;

~ i (K ’x ’+,c~y ’)

• JJ e 1 1 1 dO (K~,,~ ,L;t) =

2 L i(~~x+~ y)
~~~~~

- 

J dz(~)(~!j.) f dxf d~ if e d v ( Kj , K~ , z ; t )

- ~(xj -x ) 2+(yj -y) 2 (x-x j )2+(y-y~)2 (x j -x j )2+(yj -y1)2

x elkL 2(L-z) + 2z - 2L

(B-l )

If Eq. (B—i ) is now multipl ied by

dK1dK2 -l (K 1x~+K2yj) (B—2)
(2,T)

2

and integrated over x, xj~ y, and Yj from -
~~~ to ~~~, the left hand s ide is

L.H.S. = 
dK1 dK2 f dxjJ dy~ if d0(K~~K~~L;t) 

-

~

i ixi+ 1 l xi
~~

2
~
i) 

. (B—3)

Interchanging orders of integrati on gives
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L.H.S. = dK]dK2 if d~(Kj K
~~L;t){~~J 

dxl ~~~~~~~~~

f ~øo iy ’(ic~-K2)~
~ ~~ dy~ e 

1 J~ 
(B-4)

which is

S 

L.H.S. = dK1 dK 2 JJ do (K1 ,K~,L;t)~(K~-K l )6(~~
_K
2) (B-5)

• or finally

L.H.S. = dO (K11 K2,L;t) . (B—6)

• Equation (B-l) is therefore

dO (K 1,K 2,L;t) = dK
1
dK

2 ~ 1o ~~~~~~~~ 
~~~~~~~ ~~~~ 

dv(K~~K~~z;t)

x —4 ffdxdy Jfdx dy . e~~~~~~~~~~~
x
~~

c2)1)

1k1~~
j
~~~~~~

j
~~ 

(x—x1)
2+(y—y1)

2 (x~_xj)
2+(yj_yj)

2
]

X e 2(L—z) + 
2z 2L j

(B-7)

The x, Xj Integrals only are
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f (x~-x) 2 (x ~x~)2 (x j -x l)
2

~
_ id x  f dx~ ~~~~~~~~~ e

ik 
~ 2(L-z) + 2z - 2L

i(K~x—K1xj)
= f. J d x  id~

(i e (B-8a )

ik1 1 1  + 
x2-2xx1+x~ x~

2-2x x1+x 1
2 1

x e L 2(L z) 2z 
- 2L ] (B-8b)

2 2 2 2 2

= e
ik(

~~ 

- 

~~
T)I~

_ 
i

dxj e~~
’
~~~

1 
e
ik[2(1

~~~ 
-

1-2x~x+x
2 x2-2xx

S ~ dx e 1 e1’
~L 2(L-z) + 2z

The exponent of the x integrand only is

r -‘ Iikx ’ iK ’ ikx
2 il k 1k 1 2 _____ 

1 1 (B-9)x L~ 
2(L-z)J - X

12c L_z)  
- 

2 22

This is of the form Ax2-2xB. Completing the square and performing the
x integrati on gives the followi ng:

idx e~~
2 2~ = e

_82/’Af dx eA~~~
’1
~
2 

(B-la)

• IT e~~
2
’’

The x, x~ Integrals are then
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S x 2 X 2

1 ik(~.— - ~.) 12z(L~z)~1½ 
~ d ‘ e~~~~-ikL J j xl

1k1__

x 2 
- 

x~
2-2x~

xi] -ikz(L-z) [x 1 x~ K

e [2(L-z) 2L J e 2L r-
- (B-lla)

i (L —z )X 1K~ 1z(L—z)K~
2 

,f , z

= [2z~L z)ur]½ e L r 2k1 
~~ 

e
_ lx r~~ t

(R-llb)

i(L—z)xjK~ 
iz(L-z)K~

2

S 
= 

L [2zcL_z)1]½ e 
- 2kL 

- 

~~

. ic~~) 
. (B-llc)

It is easily seen that the y, y~ integrations give simi lar results;

i(L—z)y K iz (L— z) K~
2

L [2zcL_z)
~r e 

L 
- 2kL 

6(K~ - i ‘~2) 
(B-12)

so that Equation (B-7) is

d~(K1,K2,L;t) = dK1d’~ ~J ~~~j (~
) Jfdv(Kj~K~~z;t)

x (L)
2 
[2z L_z)wi 

6(Kj  
- 

~ 
Kb) 6(K~ - 

~~~ 
K
2)

i(L—zl , , izLL-z) ,2 .2
x e L ( x j K ~ +yj K~~) — 2kL (Kl +K2 ~ (B-l3) S
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- 

— ~~~~~~~~

F.

- Performing the K ’ integrations then gives the final answer;

-
~ d$(K1 ,K2,L;t) • ik Jdz dv(~~Kl, ~- K 2,z;t

’
)

i(L-z) — — —ICL-z) 1 2
z 2k K

x e  e (B-l 4)

which is simply Equation (46) of Chapter II.
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APPENDIX C

THE WEAK TURBULENCE APPROXIMATION —

This appendix is devoted to a description of the conditions under
which we are jus t i f ied in making the weak turbulence approximation as
it is employed in Section D of Chapter II.

The weak turbulence approximation requires that

I a I , I sI << 1 , (C—i )

where

• 
~~ 

[Dw (
~1-~2;0;0) + ~~~~~ 3-~~4;O;O)] (C-2)

and

B • - j~ [Dw(~i
_
~4
;
~~

_
~~

;t) +

- 0W l
_
~
’3.r1

_1’2,t) -

+ 2 [C
x(~~1

-
~~3

;~~j -~~~;r) + 
~~~~~~~~~~~~~

+ icx5(~i-~3
;
~~-~~

;t) - 
~~~~~~~~~~~~~~~ 

. (C-3)

DISCUSSION OF a

From the results of Chapter II, Section C, viz. Equation (76), 
S

we can express a as

— - Irl/2 ,2z ~l ~2(l-z)a = 2k2L2 I IdK ~ I dz dp + I dzl dp
fl JjO JO Jl/2 J0

X Fn(Kl~:;~PL)[l 
- e

1
~~~~~~~~~

2
~ + 1 - e

1(1
~~~~~~3~~4~~~ 

-
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Since the p integrand is non-negative (F~ is a power spectrum) we have

~l t7 — I i(b-z)
~~

(
~l-~2 ) i(l-z)~

.(
~3-~4)1a < 2k2L2 I dz II dK fl - e + 1 -

Jo ‘~ L

X J d ~ Fn(K i,K2~
pL) • (c 5)

Using the relationship between the two and three dimensional index of
refraction spectra,

* 

J d p Fn (Kl~K2,pL) = 
~~ n(1dl ’1~2i~0) , (C—6)

S 

and making the change of variabl e

u = i  — z  (C—7)

gives for Eq. (C-5)

a < 2irk2L II d~ n(Idl ,K2,O) Jdu

x - e
i 2) 

+ 1 - e~~~~
”3

~~
4
~] 

. (C-8)

Changing the variable of integration to polar coordinates , assuming
isotropic turbulence, and performing the angular integration yields

a < 4ir2k2L J d K K •n (K) J d u0 0

x [1 - J0(u,~p12) + 1 - Jo(uKp M )] , (C-9)

where
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Now for the von K~rm1n form of the index of refraction spectrum ,

-

. 

n~~ 
.033 C~[K

2+(l.O77/L0)
2]~~

/6 
, (C-la)

we have

id~ •~(K) [l—J 0(uKP12 )]

.033 C~ .{f°dK K[K
2+(1.077/L0)

2] 
fl.6

- 

J
d,c K[K2+(1.O77/L0)

2]fh’ JO (UKP 12)} . (C—li)

The right hand s ide of this equation is eas ily put into the form

.033 C~ 
(l.O77)~

5/3 I
fdx x(x

2+lY~
I
~
’6

- y~~
’2 
f
°
dx xlI’2(X 2+byW6 J0(xy) , (C-l2~

)

where

= 1.077 , (c—12b)

and we have made use of the change of variable x = KL0/l.077.

The first integral In the above expression yields a Beta function [73]
and the second integral is a Hankel transform [104]. Performing these
integrat ions results in
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J0
dic K •~(Ic)[ l-J0(uKP12)]

.033 C~ 
(i.077

)
5/3 

2rh~~~) [1 
- 2 

Y K 5/6(Y)

] 

, (C-13)

where Kç, is the modified Bessel function of the second kind and order
• 5/6. We ~equ1re the separation to be much smaller than the outer scale,

so that the right hand side of Equation (C-13) can be approxImated [105]
as

• 2 (l .077Y 513 r(5/6) r(l/6) ~j.~5/3.033 Cn 
~ L~ ) 2r(11/6) r(il/6) )

or
5/3

.033 C~ ~~~~ (
~~12) . (C-l4)

With these results , inequality (C-9) gives for a,

a < 4

:

2k
2 .033)C~ ~~~~~ [(~~~~

)

5~/3 
+ 

(

~~~~~~
.)5

u
/3]

x f du u513 , (C-15) S

JO

or finally

a < ~~ (.O33)C~ rr2k2L 
~~~~ [(~i~.)5”

3 
+ 

(
~~ )5~l3] . (C-16)

The separations, p.
~
j , are bounded by

~ AL
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where & is the jnner scale of turbulence. For a Helium-Neon laser

F (A • .6S28 x l0~ meter), a one centimeter inner scale, and a one
• kilometer range we obtain

- 

a < 5.384 x i&6 c~(~~
3 

+ ~~~3) ~ bo~~ c~ . (c-17)

Therefore for 1015 C~ c i we can employ the weak turbulence approxima-
tion.

DISCUSSION OF B

With Equations (72), (74) and (76) In the text, 8 is expressed as

2 2 — 1,1/2 ,2z •,l ,2(l-z) 1
- • B = 2k 1 I Id K ~~ I dz I dp + J 

dz I dp ~
. F~(K1~K2~PL)

~ ~ ~0 1/2 ‘0 J

x e 
z rj_r +TV] [i-)K.(r.~-r4) + e

1
~~~~~~~~2~~3)

i(b-z) .(~l-~3)-i2y i(b-z)~.(~2—~4)+i2y1- e  - e  j , (C-l8a )

where

= (z_z 2_ p2/4) ~~~~~~~ - . (C—18b)

Now B is max!mua for zero time lag(t=O) and zero receiver plane
separation (r~

_r
~=O) so that 

-

2 2 — 1,
1/2 ~2z ,1 ~2(1 z) 1

< 2k L JJ d K 41 dz J dp + dz J dp 
~ 

Fn(Kl~K2~
Pp L)

—~~ 0 ‘1/2 0 J
I i(i-z)~.~~4 l(l-z)

~
•
~23x e + e

i(l-z)~.i13-i2y I (1-zY~
.
~24+i2y1

- e - e  j , (C-l9)
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where 
~i ~ ~~~ 

-
~~j .

Further, B is maximized by setting the separations r1j equal to zero:

B ~ 4k2L2 lId; 
~
{
i/2 

J d p  + 11/2 
j
2(1 z)~~~ Fn(Kb I K2~

pL)

• ~ - ~ [~
_~~_~2/~ 

~
-
~]} . (C-2o)

Little error is Incurred by dropping the p dependence of the cos
function and extending the upper limi ts on the p integrals to infinity
(see Appendix D) to obtain

B Z 4wk2L IJdK I~z •n(Kl,K2,0) - cos[z~~~~~ K2]} 
. (C-2l )

Changing the variabl e to polar coordinates, assuming Isotropic turbu-
lence, and performing the angular integration gives

B ,~ 8n2k21 fd K K •n
(K)  

f~
dz ft - cos

[ 
1 z)L K2]} (C-22)

With the Identity

rl1 - cosx = x J du sin ux (C—23)
0

inequality (C-22) becomes

B ~ 8ir
2k2L K °n~’~ 

Jdz 
[z(l-z)L. K2]

x Jdu sin [u
2
~~~

)1 
~2] , (c-24)

or
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B ~ 8n2k2L J dz  [z(]~z)L] 
f u

~ J d K  K3 0n(~~~
1fl [~ 

z(l-z)L 
K2] . (C 25)

For the von K~rm~n index of refraction spectrum, as in Equation (C-b ),
we find

B ~ .033 C~ 8w
2k2L Jdz 

[z(l-z)L] J du

x J d K  K
3
[K
2+ (l.077/LO)] “~ sin [u 

z{1-zfl. K2]  . (C-26)

A stronger inequality results if the outer scale is set to infinity
(l.077/L0=0);

~ < .033 C~ C—
2k2L 

J
dz [z(l_zi

L] 
J
’
ciu

x idK K 2”3 sin z(1—z)L (
2] 

, (c-27)

or

B < .033 C~ 4w
2k2L Jdz [z(1;

z)-!~-] 
f

1
du

x J dx x
_5/6 sin [u 

z(l-z)L 
x] , (C—28)

where we have made use of the change of vari able

x = K 2 .

Performing the x in tegration [106] yields
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B < .033 C~ 4~
2k2L J dz [zIl-z)L] Jdu

or 

[~ z(l~z)L] U
1 

r(i - 
~
) ~~~~ (

~
. , (C-29)

8 .033 C~ 4ir2k7”6L1
~

’6 r(b /6) cos (
~
)

~ f~c~z z5’6 (l-z) 5’6 J d u  u~~
”6 . (C—30)

The u integral gives the value 6/5 and the z integral is a Beta function
[73]. Finally we have

B < .022 C~ ,r
2k716111’6 ~~

- cos Sn r(i/6)r2(1i/6)

From Tatarski [21], the log-ampl i tude variance for a spherical wave with
an infinite outer scale of turbulence is

= .124 C~ k
7’
~
6L 1
~~
6 (C-32)

so that

8<44 . (c-33)

Inequal ities (C-17) and (C-33) constitute the resul ts of this
appendix. These expressions state that we are justified in employing
the weak turbulence approximation in the development of Chapter II if

• 5.384 x i~
13 C~L (p12

513 + p34
5/3) << i

and

44<z l

135

_ 
-S- -S - - - - - -_ - - --- ’ --



________________ — •__.—__._ ~ ~~~~~~~~~~~~~~~~~~~~~~ 
— -‘- - --—5 • —.w• - -’--_~ ~~~~~~~~~~~~~~~~~~~~~

APPENDIX D

DEPENDENCE UPON LARGE OUTER SCALES

In this appendix we discuss the approximations Involved In going
from Equation (88) to Equation (89) in Chapter II.

The scintillation spectrum is expressed by Eq. (38).

Ir l/ 2 ,2z ,l ,2(1—z) 
~1S (w) • 2k 2L22 I dz I dp + I dz I dp ~J J O  ~O ‘1/2 J O J

~ jJd;Fn(Kl .K2,PL) (2ir6~~~~~)]

tf(z,p,~,w) - H*(z,p,
_
~,w)I

2 
, (D te )

where

H(z,p,~,w)

~1(i~z~p2/4)L,c2 — — —
e 2k 

J
d~s~(~) e~~

r E - 
L(1-~)ic

) E*(~) 
. (D-lb)

We will show that under a reasonable set of~ ci rcums tances , the
p dependence of the H function can be suppressed and the limits onthe p integrations extended to infinity . First we shall demonstratethe approximations for high spatial frequencies and then for low
spatial frequencies.

To simplify the discussion which follows , we adopt the following —

notation: -

11+ H(z,p, ,w) (D—2a )

H(z,p,- ,w) . (D-2b)

The square modulus term in Equation CD—la) is then given by
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/

= ~Jd~w(fle
i
~~~ E(~ - 

L(1-z) 
K) E*(~~~2

+ ~~~~~~~~~ E(~ )E*(~ + L(1-z) 

~~

- ~~~~~~~~~~~~ [Jd~N(~) ~~~ E(~ 
- ~~1-z) 

;) E*(~)]

x 
[f
dFw(~ )e i

~~~ E*(~ )E(~ + 
L(i-zl

- e~~~~~

21

~ ~~ [JdFw(~)e
1
~~ E*(~ 

- 
L(1-z) 
;) E(~)]

x [Jd~~(~)e~~~ EG~
)E*(~ + 

L (1-z) ;-)] (0-3)

For high spatial frequencies ( K >> 2ir/ /51) the exponential terms
involving p oscillate so rapidly with respect to the other terms in
the expression that we may replace them by their average integral
value, zero. Within the high frequency region then

IH+-H~I 2 = 
I~~~ +I

2 + I~1_ I 2 (0-4)

and the dependence upon p disappears from this term. The onset of
this region is at roughly

LK2

that is

K “~ 211/15t . 
(0-5)

However, under the assumption of isotropic turbulence , the two dimen-
si onal index of refraction spectrum has a breakpoint (57] at
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KpL 2w (0-6)

beyond which the spectrum decreases rapidly. So, for high ~patia1frequencies, En is very small beyond the point

2w
~~~pL~~ 2w

or

‘

~ J~<<< i • (D-7)

Therefore we may, with little error, extend the upper limit on the p
integrals to infinity to obtain

11/2 2z 1 2(l-z) 1dz J dp + J d Z  J

x

= 
~~0n(Kl

,K2,0) Jdz JH(z ,O,,w )~H*(z,0,~~,w)l
2 

, (D-8)

where we have made use of the relationship between the two and three
dimensional index of refraction spectra;

Idp Fn(Kl,K2,pL) = 
~~~ •~(~p~~ ,O) - (D 9)

Equation (D—8) is the desired result of this appendix . We have
justified this approximation for high spatial frequencies (K>>2w/P’5t).
It will now be demonstrated that Equation (0-8) is valid at low fre-
quencies as well.

Now recall that the two dimensional index of refraction spectrum ,
F,~, is small beyond the point KPL ‘~ 2w. Therefore the frequencies for
which F~ is significant are given by

KPL ~~ 2w , 
- 

(D-1O)
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or

S (KpL)2 ~ (2w)2

S or
S 

(Kp)2L w A << w . (D-l1)

The left-most term in Inequality (0-11) is merely the p dependence of
the H function (Equation (D-lb)). Since the p dependent term of the
H functions is much less than w wi thin the region where En is signifi-
cant, i.e., low spatial frequencies, we can drop this term altogether.
The H function therefore becomes

— i (l—z)LK2 
S 

—

H(z,~,w) = e 2k 
fd~~~(~~) e~~~

’E(i~- LLi~
z)ic
) E*G)

-. 

— (0-12)

For low spatial frequencies such that

the field translation term in the expression for the H function is
bounded in the following manner:

- (D-13)

S For wel l behaved (free space) receiver plane fields, i.e., those vary-
ing slowly over a lateral distance on the order of a fraction of the
Fresnel zone, /~E, the square modulus term in Equation (D—la) can be
written

lH +-H~I
2 
~ 

4C2 s-in 2 [(1_z) 

~ 
(D— 14a)

or further

(H +_H*I’2 ~ 4C2 {(l-z) L]2 K , (D-14b)

where
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C = 

J 
d~~e~~~~wG) 1E6 )1

2 
. (D-l5)

Under most cases of interest (receiver pupil , w, smaller than a
Fresnel zone, /~[) the C function i s a very wea k funct ion of K for
K<2fl/ t”~t. Hence the low frequency dependence of the modulus squared
term is ,~~~~. This fourth power dependence upon spatial frequency
strongly suppresses any contribution to the scintillation spectrum
due to low spatial frequency atmospheric inhomogenieties. For the• Kolmogorov (infinite outer scale) model of the iQdex of refraction
field the low frequency dependence of F is K 81

~. Even for this
model the K4 dependence of the square m8dulus term will cause the S

scintillation spectrum to be highly insensitive to low spatial fre-
quency index of refraction inhomogenieties.

Wi th the forego ing arguments the sc inti llation spectrum i s expressed
as

S~(w ) = 4w2k2L JJd; n(Kl ,K2,0)~~~~~V)

x Jdz H(z,,w)_H*(z,_ ,w)12 , (D-l6a)

S 

where

H(z ,~,w) =

S 

—I (l—z)L K2 
— —

e 2k fd~.~(i)e~~
t 
E(~ - 

L(1-z) E*(~) . (D-16b)

These expressions are identical to Equations (89-a) and (89-b).

Q.E.D.
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APPENDIX E
DIFFRACTION OF AN ARBITRARY FIELD BY A PHASE GRATING

Wi thin this appendix we develop a mathematical description of the
fields diffracted by a weak phase grating.

We assume the saint geometry as In Fljurt 8 Of Chapter II; a phase
grating of period 2ir/IKJ and orientation K/lid located in some plane
z such that OczcL. The weak phase grating Is defined In terms of its
transmission function

iccos(~ •F)S T(~ ,?) • e (E—l )

-:  where I c I ~~~~~~
l .

Keeping only the first two terms in the series expansion of Equation
S CE-i) yields

— — — — e i~~.F 
~T(K ,r) ~ 1 + Ic cos(K .r) 1 + I ~ e +1 ~ e (E-2)

Now assume an arbitrary field to be Incident upon the grating from
the left. At z—r the fiel d Is

- 
‘ (E-3)

and at z—z’ the field is

inr -~F

+ 
= ~ C~ ECF)1 

e (E-4)
Z fl~~l Z~

where
I” IC~ (1 c/2) (E—5)

The receiver plane field Is determined by performing the Fresnel
diffraction Integral over the field within the plane z~z ;
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E(r’) = eik
~

_
~ 1 -1k lç ~~ E(r) e2hL~~

L L 2w (L z)J

(E-6)

Combining Equations (E-4) and (E-6) yields
S 

ikr ’2
ik(L—z) r —

~ , 1
E(F’ ) = e —1k 

~~~~~ ~ C,~ JdY E(r) (E-7)
L L2w (L—z)J n=—l z

x e~~
1
~~ {

~.2 2F [i - 
n(L z)

Symbolically performing the integration gives the receiver pl ane
fields

e
ik
~~~ 

11 
e

1
~~ 

~~~~ 

~~~~~~~ ~ E(~
1 _ n(L-z) 

. (E-8)

This expression for the principal diffracted fields (minus one, zeroth,
and plus one) of a weak phase grating is the result of this appendix.
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APPENDIX F

DETAILS OF THE DIRTY BEAM MODEL

The objectives of this appendix are twofold. First we shall
demonstrate that, with little loss of generality , we can assume the
phase obstacle to be axially located wi thin the beam. Then we pre—

- 

- 
sent an outline of the optimization of the eigen-mode expansion of
the complementary field.

We restrict our attention to the situation in which the receiver
- - is in the far-field of the main laser beam, (Fresnel number much

larger than unity) and the detector is near the beam axis (r0<<w(L)).
Under these conditions the scintillation spectrum of the main beam
alone is th~.t of a spherical wave and is therefore insensitive tothe detector location. Now consider the case in which the receiver
pl ane field consists of the field of the main beam plus the diffrac-
tion pattern of the phase obstacle. As l ong as the detector is near
the axis of the main beam the scintillation spectrum (of the dirty
beam) will be dependent only upon the relative positions of the
detector and the phase spot diffraction pattern. Therefore we can
assume, without loss of generality, that the phase obstacle (and
hence its diffraction pattern) are axially located wi th respect to
the main beam.

Now in performing the actual eigen mode expansion of the com-
plementary field , there are two points wi th which we must concern
ourselves : 1) The phase curvatures (within the z=0 plane) of the
main and complementary fields must be identical (so that the mode
expansion will Indeed converge to the actual complementary field).
2) Since we wish to approximate the complementary field by only a
finite number of terms, we must insure a close approximation to the
actual field , i.e., optimi ze the expansion .

The phase curvature of the complementary field is contained in
the weighting function of the eigen mode expansion , (see Equations
(200))

kM/2L 2 2
- 1+iM(z+z1 )/L 

(x +y )
e . (F-l)

Comparison of this weighting f-unction wi th that of Equation (194 )
shows that for equal phase curvatures (at the plane z=O) we must have
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Im{~ (z0)} • Im(8(z1 ))

that is

z (N/L)20 
. (F—2)

l+(z0N/L)2 l+(z1M/L)2

Our optimization procedure is based on the minimization of the
integral square error between the complementary fiel d and its truncated
series approximation. The error is defined as

S if JE C(x,y,O)~E~(x,y,O)~2 dxdy , (F-3)

where

L L
E~(x,y,z) 

m~O n~O 
‘mn g~(x .z+z~)g~(y,z+z~) . (F-4)

By making use of the orthonormality of the mode functions and Equation
(198) for the complementary f ield we find that Equation (F-3) can be
expressed as

£L • JJ dxdy JD~(x—x 5,y-y5)E(x ,y,O)J 2

— 
! IYm I

2 (F— 5)
m—O n-O ~

The error is then minimized by taking the partial derivative of 
~ 

with
respect to the complementary beam Fresnel number :

L La ~ ~~~~~~ 
r = o  . 

-

~~ in~O n”O ‘
~~
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The enti re problem now reduces to that of solving two simultan-
eous equations (Equations (F-2) and (F—6 )) for the complementary beam

• waist spot—size W 1 and locations z1.
We now proceed wi th an example of the use of the foregoing com-

plementary field expansion . In the interest of mathematical simpli-
city the complementary field is approximated by only its lowest order
eigenmode. The expansion coefficIent of this mode is given by

~oo 
= J1~~x~ EC (x ,y,O) g~(x ,z~)g~(y,z1) . (F-7)

As has been j ustified previously, without loss if generality we
can assume the phase object described by D

~
, to be axially located .

That is

IA e~’ ; [x2+y2 < 6/2
D6(x,y) = . (F-B)

1 ~ ; elsewhere

Employing EquatIons (194), (198), (200), (F-7), and (F-B) we obtain

c~(z )B*(z 1)
w,JrW0W1

[l-A eI~.l]

I
x t l _ e  J . (F-9)

Application of Equation (F-6) to y
~ yields , after some lengthy

algebraic manipulations

x = &n [l_2xy(~~)] 
- 1 , (F—iDe)

where we have defi ned

~ (z )
= r i  (F-la)
~r’ 0’
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and

y = ctr(z o) (~)2 . (F l0c ) -

‘

In Equations (F-b ) x is seen to be the square of the ratio of the main
beam to complementary beam spots izes (at z=0) and y the square of the
ratio of the spot radius to the main beam spotsize. Solution of
Equation (F-b a), which at first glance appears a formidable task, isS easily accomplished by an iterative technique;

1 l+x lX~+l = £fl 
[1 2YXn(l..x

t
~)j - 1 , (F—h a).

In which we let

x0 = y~ . (F—llb)

Equation (F—b ib) for the fnitial guess for x states simply that (at
z=0) the complementary beam spotsize will be on the order of the
radius of the phase obstacle. 

S

From Equation (0-lob) we see that

~r~~
l) = )( a,.(z~) (F—12)

and from Equation (0-2)

~i
(z1) = cs1 (z0) . (F-l3)

Since x is known (from the solution of Equation (F-b a)) and u(z0) is
known, we have two simu ltaneous equations In the two unknowns, w1 and
z1. At this point the complementary beam ( including the mode coeffi-d ent, y ) is completely specified . Within the transmitter plane the
total f1~1d is

E(x,y,O) = 4(x,y,O) (F-14)
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and at the receiver the field is

E(x ,y,L) — Eg(x,y,L) . (F—l5)

Thi s concludes the appendix.
I

i s-

I I
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APPENDIX G

COMPUTER PROGRAM LISTINGS

This appendix contains listings and brief discussions of the com-
puter programs used to evaluate the temporal scintillati on spectrum for
the clean gaussian beam (Chapter III) and the dirty gaussian beam
(Chapter IV) for homogeneous and/or localized turbulence. These pro-

S 

grams are designed to evaluate the expression

w0S~(w) C 
Jdz J did f(z)[w/~0)

2 + K2
12(O,O,L)ci5 12(O,O ,L) 0 -

~~~

+ (1.O77,L~)2]~~
h’6 x 1H (za ~~— c.W) - H*(z . 

~
_._ic ,W)l2, (G-la)

where

~(1 -z) 17w \
2 21 1(s~

_ 
~~ + K

H (Z. ~~ ,K ,W’) e ~~ L~wo) 
K 
Je \~ O ~ t

x E~~0 - 
~~(1-z)w/w0 

~ 
- 
~~ (1;z)K) E*(x0,y0) , (G-lb)

C is a constant defined as

c = 256v’~ç~4~3) (_ cos 
~~

-

~

- ~r) = 48.527 , (G-lc)

and f(z) is a longitudinal turbulence strength distribution function.
For homogeneous turbul ence, as in program one,

f(z) = 1 . (G—2)

In program two we used

f(z) 100 e~~
OOZ . (G-3)
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Equation (G-lb) was obtained from Equ at ion (89b) In the text by essum 1n~a point detector,

w(F) • 
~~~( I ~~~-F0I)  .

For the clean gaussian b em the field, E, in Equation (G-lb) was given
by EquatIon (194) in the text. The field Of the dirty gaussian beam
was given by Equation (202b).

To simplify the progrsianing, use was made of the change of variable

so that the expression for the spectrum was given by

- 

- ~~~~~~~~ ~~~ 
idid ,c 1/2

x [(~ )2 K + (1.o77/L~)2]_ h1/5

x [IH(z,~
l/
~
.w) - t(*(z,_ _,.ic.w)~

2

+ IH(2. ..d ,w) - H*(z_ 
~_.~c,w) 2] (G-4a)

where

•j (1-z) Ifw \2+ 1 ~~~~~~~ ~~~
H(z1~~!v’~.W) 

• e 4ir 
~~~~~~~~~~~ 

IC
j  e 

K IT

x E(xo - 
—.—-

~~~
.———--— , y0 

- 
__
~~~~~

- _ )  E*(X0,y0) . (G-4b)
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The numeri cal algorithm employed in approximating the integrals
in Equation (G-4) was Gaussian quadrature [95,96,97]. This technique
basically involves fitting a Hermite polynomial to the function to be
integrated and integrating the polynomial over the desired limi ts . To
approximate the integration over the range variable z, a single 32
point Gaussian quadrature routi ne was used. The 32 point routine as
opposed to a higher order quadrature formula was deemed adequate be-
cause the z integrand was slowly varying. The K integration was approx-
imated by breaking the range into segments thus

M it~
I d~ F(K) ~ 

~ J d~c F(K) , (G—5

Jo i=1 (i-1 )~
and employing an eight point Gaussian quadrature routine on each seg-
ment. In Equation (G-5) the width , ~~~, of the segments was chosen such
that

1(~~\
2 

+ 
(l.077~

2 
1

J ’ ~ o J ~~L1~ / ‘

1 (G-6)

L 1/(w/w~) ; (~) > 1

and the upper limi t, M, on the sum was such that the last segment
integrated made a negligible contribution to the integral , i.e.,

I d~F(i )J (I4-l)~ — < lO~~ . (G-7)

~ J dKF(K) + f dKF(K)
i=l ( i— l )~

This method of breaking a large integration range into smaller pieces
is commonly called composite or compound integration [98] . The advan-
tages of this technique are a smaller error and the ability to approxi-
mate integrations over infinite or semi-infinite ranges [98].

Listings of the programs’ used in Chapters III and IV fol low. Also
included are listings for the eight and 32 point Gaussian quadrature
subroutines. The notation used in programs one and two is consistent
wi th that of the text and of this appendix.

150

~



• 

- 

~~~~~~~~~~~~~~~

------—--- - —

~

‘—

~~

--- 

~~

------ ----- --

~~~~~~~

-

~~~~~~

- 

~~~~~~~~~~ 

—

~ 

S -~~~~~~~~~
-
~~~~~~~~~~~

- ---- -
~~

--- -- -w’ - - ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program one calculates the dirty beam scintillation spectrum for
• homogeneous turbulence. To obtain the scintillation spectrum of a

clean beam from thi s program, the complex vari able C2 is set to zero.
The di rty beam spectrum for local ized turbulenc e is calcula ted by
program two. A linear combination of the results of these two pro-
grams yields the dirty beam spectrum for the combination of homo-
geneous and localized turbulence.

1.
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BFSI AVAI[ABLE COPY
PROGRAM ONE

C SCINT I LLA TION SPECTRUM FOR DIRTY BEAM (PHAS E OBJECT )
C WITH 0FF—AXIS POINT DETECTO R AND LOCALIZED TURBULENCE.• C ZERO—ZER o OROER APPROXIMATIO N TO DIRT SPOT

OPTIONS DP
INCLUDE DOG8BiDOHRB
EXTERNAL ZINT ,EFIELD
REAL 1050
COMPLEX A ,B,BC,AL. BLI CI .C2 ,EFO,EFIELD
COMMON AL,BL, CI ,C2,OMEG,FOMEC I ,FOMEG2.F1Z.F2Z,EFO ,EKSO,WYEO

I ,PI ,~ RES
CALL ASSIGN(6HTMPOUT,O. .6)
CALL FERR (O)
CALL DEASSN
PI—4 .*ATAM ( I .)

C POSITION OF POINT DETECTO R
EKSO—O.
P.YEO—SQRT ( .2)

C DIAMETER AND PHASE OF DIRT SPOT
Da— .917E—3
PHI —5 • 333580778

C WAIST SPOTSIZES AND LOCATIONS FOR MAIN AND COMPLEMENT ARY BEAM S
~‘iO—20 .2 E—6
N —3. 146345943E—4
Zo—I .
Z 1— . 4080236 159

C RANGE , OUTER SCALE. AND WAVELENGTH
EL— I .E3
ELO—I.
ALA M— • 632 8E—6
FRES=SORT (ALAM*EL )
FELOP—l .077/C ELO/FRES)

C AA—N /L
A A ALAM/( PI*N0*W0)

C BB—M/L
BB=ALAM/ (PI*N l *W I )

C A=A LPHA(Z0)
A NO*W O*CMPLX( I .,AA*Z0 )
A—I ./A

C B—B ETA (Z l )
B=Wl *Wl *CMPLX (I .,BB*Z I)
B— I ./B
BC=CONJG( B)

C AL—ALPHA (L+Z0)
AL NO*W0*CMPLX( I .,AA*(Z0+EL))
AL— I ./AL

C CI—ALPHA (L+O)*110
CI.W0*AL

C I O SC—I ( 0 .0,L)**2
IOS0— REAL(CI*CONJG(CI ))** 2

C BL—F•ETA( L+Zl)
BL.PfI*WI *CMPLX( I .,BB*(Z I+EL))
BL—I ./BL

C C2—E ETA(L+Z l ) *GAAMAOO*W I
C2u( I. —C EX P(— (A+F3 C)* (DEL,~ .)**~~))*( l.—c~ x p(CMp~ X (o. ,pHf f l)
C2—C2 *A*BC/( A+BC)
C2a2 • *N I *WO*C2
C2—C2*BL*Nl -

EFO—EFI ELD(EKSO ,WY EO)
C OMEG—OM EGA/OM EGAO

OMEC— I .E—5
FRINC=I0. **( 1./8.)
COPISI—48.52728232
DC) 50 1—1 ,57
FOMEG I (OMEO)**2

I +PFT flD**)
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BEST AVAILABLE COPY
- tAt~~DaG32(0. 1~~ 2rNT ,-ANs )
ANS . 5*ANS*COplST/!OSQ
WRITE(6,—)C)MEG.AN S

50 OMEG-OMEG*FRINC
CALL EXIT
END

C
C THIS IS THE INTEGRAND FOR THE PATH INTEGRATiON

FUNCTION Z INT(Z)
EXTERNAL AICINT
COMPLEX AL,BL,CI ,C2, EFO

- 
- COMMON AL.BL,CI ,C2,OMEO,FOMEG I ,FOMEO2 .F IZ.F2Z.EFO.EXSO, WYEO

I,PI,FRES
F-IZ.( I .-~Z)/ (2. *PI)
F2Z.FIZ*FRES
AUPR FOMEG2
IF(FOMEGI .GE.l.)AUP Ru~I./SCRT(FOMEGI )
ZINT—O.
ALNR O.

5 CALL DOO8(ALP~R, At IPR,A KINT.ANS )
ZINT—ZINT+ANS
ALWR AUPR
AIJPR 2.*AUPR -

IF(ANS.LT. I .E—5*Z!NT)RETURN
GaTo S
END

C
C THIS IS THE KAPPA INTEGRAND

FUNcTION A KINT(AKP )
COMPLEX AL,8[.,CI ,C2, EFO ,FcN ,EFI ELD,F6 ,F7
COMMON AL,BL,CI ,C2 ,OMEG,FOMEG I,FOMEc2 ,FIZ ,F2Z ,EFO,EKSO.WY EO
F
F2—AKP+FOMEG2
F3~FIZ*F1*.5F4=F2Z*SORT(AKP)
F5 F2Z*OMEG
F6— EFO*CEXP(CMPLXCO., F3) )
F7—CONJG(F6 )
FCN—EFI ELD( EKSO—F5, WY EO—FA ) *F7
FCN FCN—CONJG(EFIELD ( EKSO+F5, WYEO+F’) )*F6
AKINT.iREAL(FCN*CONJG(FCN))
FCN—EF I ELD C EKSO—F5, WYEO+F4 ) *F7
FCN=FCN—CONJG(EFI ELD( EKSO+F5, WYEO—F4) )*F6
AK! NT*AKI NT+REAL( FCN*a)NJcc FCN))
AKINT AKINT*F2**(—I .83333333333)*AX P**(— .5)
RETURN
END

C
C THI S FUNCTION CALCULATES THE EFIELD AT THE RECEIVER PLANE.

COMPLEX FUNCTION EFIELD(X,Y)
COMPLEX AL,BL,CI ,C2
COMMON AL,BL,C1 ,C2
R SG-X*X+Y*Y
EFIELD—CI *CEXP (~ AL*R5O)~ C2*CEXP(—BL*RSO )
RETURN
END

‘I
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- PROGRAM TWO

C SCINTILLATION SPECTRUM FOR DIRTY BEAM (PHASE OBJECT )
C WITH OFF—AXIS POiNT DETECTOR.

-
. C ZERO—ZERO ORDER APPROXI MATION TO DIRT SPOT

-: OPTIONS OP
INCLUDE DOOBE sDOG~2B
EXTERNAL ZINT ,EFIELD
REAL IOSO

A , 3, BC, AL ,BL ,CI ,C2, EFO, EFI ELD
COMMON AL.BL,CI ,C2, OMEG ,FOMEG I ,FOMEG2 ,FIZ,F2Z, EFO,

CA LL ASSI~~4(6HTMPO(JT,0. .6)
- CALL DEASSN

S CALL FERR(0)
PI*4 .*ATA NCI .)

C POS ITION OF POINT DETECTOR
EKS O—O.

-
‘ WYEOaSORT( .4)

C DIAMETER AND PHASE OF DIRT SPOT
91

- PHI S.333580778
C WAIST SPOTSIZES AND LOCATIONS FOR- MAIN AND Co MPLEMENTARY BEAMS

N0 20.2E—6
WI— 3 . 146345943E—4

- ZO—I .
ZI— .4080236159

C RANGE, OUTER SCALE, AND WAV ELENGTH
EL— 1.
ELG-).E2
ALAN— .6328E—6

— FRES—SORT C ALAM*EL)FELOP—I .077/C ELO/FRES)
C AA PJ/L

AA ALAM/( P1 *WO*WO)
C ~33—M/L

BB ALAM/(PI*NI*W))
C

A~ N0*WO*CMPLX( I ..AA*ZO)
A—I ./A

C 8— BETA( ZO)
B—WI *W I*CM pLx I .,BB*zI)
8—1./B
BC CONJGC B)

C A L ALP HA(L+ZO)
AL~WC*WO*CMPLX (I , AA* (Z0+EL))
AL— I ./AL

C C I—ALPHA (L+ZO
CI WO*AL

C IOSOaI(O,O,L)**2
I0SO—REAL (CI~CONJG(CI ))**2 - 

S

C BL—~ETA(L+ZI)BL*MI*Wl*CMPLXCI. ,BB*(ZI+EL))
- 5L 1./BL
C C2—BETA CL+ZI

C 2 (  I .—CEXP(—(A+ BC)*(DEL/2 . )**2 ) )*( I .-CEXP CCMPLX (0. ,PHI ) ) )
C 2 C 2*A*BC/ C A+BC )
C2.2.*WI*WO*C2
C2.C2*BL*PII —

EKSO, WYEO)
C

OMEG—I.E—5
1.18.)

CONST—48.52728232
DC) 50 1—1 ,57
POZ4EOI ~(o)MEO)**2FOMEG2.FC)MEG1+FELO P**2
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CALL DOH8(0.,.2,ZINT,ANS)
ANS— • 5*ANS*CONST/l OSO
ANS ANS*EL/IO.
PiRITE(6 .— )OMEO, ANS

50
CALL EXIT
END

C
C THI S IS THE INTEGRAND FOR THE PATH INTEGRATION

FUNCTION ZINT (Z)
EXTERNAL AKINT
COMPLEX AL, BL,CI ,~ 2,EFO
COMMON AL.BL,C1 ,C2,OMEG ,FOMEG I ,FOMEG2,FIZ,F2Z,EFO.EXSO.WYEO

1,PI,FRES
F I Z — (  I .—2)/(2.*PI )
F2Z.FIZ*FRES
AUPR FOMEG2
IF(FOMEOI .GE. I. )AU PR— I ./SORTC FOMEGI )
ZINT O.
ALWR—O.

5 CALL DOG8 (ALPR ,AUPR ,AKINT,ANS)
ZINT-ZINT+AN S
ALWR—AUPR

— 
- AUPR 2.*AUPR

IF(ANS.LT. I
OOTO5

JO ZINT~.ZINT*EXP(—Z*IOO.)
RETURN
END

C
C THIS IS THE KAPPA INTEGRAND

FUNCTION AKINT ( AX P)
Co MPLEX AL,BL,CI ,C2,EFO,FCN ,EFIELD,F6,F7
COMMON AL,BL,CI ,C2.OMEG,FOMEG I ,FOMEG2,F 1Z,F2Z,EFO,EKSO, WYEO

- FI—AKP+FC )MEG I
F2—AKP+FO MEC2
F3~FIZ*F1* .5
F4~F2Z*SORT(AKP)F5—F2Z*OMEG
F6~EF0*CEXP(CMPLX Co., F3))
F7—CONJG( F6)
FCN—EFI ELDCEKSO—F5, WY EO— F4)*F7
FCN—FCN—CONJ G (EFIELD (EK SO+F5 ,WYEO+F4) )*F6
AK INT~REAL (FCN*CONJGCFCN))
FCN—EFI ELD( EK5O—F5, WYEO+F4 )*F7
FCN—~CN—CO NJG ( EFI ELDC EKSO+F5,PIYEO—F4) )*F6
AKINT~AKINT+REAL (FCN*CC)NJG(FCN))AKItfI~AKINT*F2**(—1 .8333~333333)*AKP**(— .5)
RETURN
END

C
C THIS FUNCTION CALCULATES THE EFIELD AT THE RECEIVER PLANE.

COMPLEX FUNCTION EFIELD(X,Y)
COMPLEX AL,BL.CI.C2
COMMON AL,BL,C1 ,C2
RS0.X*X+Y*Y
EFI ELD—C I *C~~P( —AL*RSO )—C2*CEXP (— ~~*R5O )
RETURN
END

Is
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- 

- EIGHT POINT GAUSSIAN QUADRATURE SUBROUTINE

C 12
C SUBRo UTINE DQG8 13
C 14
C PURP OSE is
C TO COMPUTE INTEGRAL(FCT(X) , SUMMED OVER X FROM XL TO) XU) 16
C 17
C USAGE 18
C CALL DOG8 (XL,XU ,FCT,Y) 19
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT 20
C 21
C DESCRIPTION O) F PARAMETERS 22
C XL —DOUBLE PRECISIo N LOWER BOUND OF THE INTERVAL. 23
C XU —DOUBLE PRECI SION UPPER BOUND OF THE INTERVAL . 24
C FCT —THE NA ME o F AN EXTERNAL DOUBLE PRECISIC)N FUNCTION 25
C SUBPROGRAM USED. 26
C Y —THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. 27
C 28
C REM ARKS 29
C NONE 30
C 31
C SUBRo UTINES AND FUNCTION SUBPROGRAMS REQUIRED 32

- - C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) 33
C MUST BE FURNISHED BY THE USER. 34
C 35
C METhOD 36
C EVALUATION IS DONE BY MEANS OF 8—POINT GAUSS QUADRATURE 37
C FORMULA, W HICH INTEGRATES POLYNOMIALS UP TO DEGREE 15 38
C EXACTLY. FOR REFERENCE, SEE 39
C HANDBCX)K OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS. AND 40
C MATHEMATICAL TABLES,EDITED BY M. ABRAMOWITZ AND I. A. STEGUN
C U.S. GOVERNMENT PRINTING OFFICE, WASHINGTO N D.C. 42
C PAGES 887,888,919 43
C 44
C 46
C 47

SUBROUTINE D008 (XL,XU,FCT,Y) 48
C 49
C 50

DoUBLE PRECISION XL, XU, Y, A, B, C, FCT SI
C 52

A— .~D0*(XU+XL) 53
B—X U—XL 54
C— . 4801 4492824876D0*B 55
Y— .506 1 42681 45188D—I*(FCT(A+C)+FCT(A—C)) 56
C— .39833323870681 *B 57
V—V ’. II 11905172266800*(FCT(A+C)+FCT(A—C)) 58
C— .2o2766204c~58 16*B 59
Y—Y.. I5685332293894D0*(FCT(A+C)+FCT(A ~C) )  60
C— .9I71732124782D—I*B 6)
Y~B*CY +.l8I34 I891689l8Do*(FCTCA.c )+FCTcA~C)~~ 62
RETURN 63
END 64

II
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BEST AVAILABLE COPY
THIRTY-NO POINT GAUSSIAN QUADRATURE SUBROUTINE

C SUBRo UTINE DCG32
C 14
C PURPOSE IS
C TO) COMPUTE INTEG RAL(FCT(X ) , SUMMED OVER X FROM XL TO) X ’J) to
C 17
C USAGE l B
C CALL D0032 (XL .XU,FCT.Y) 19
C PARAMETER FCT REQUIRES AM EXTERNAL STATEMENT 20
C 21
C DESCRIPTION OF PARAMETERS 22
C XL —DOUBLE PRECISION LONER BOUND O)F THE INTERVAL. 23

- C XU —DOUBLE PRECISIo N UPPER BOUND OF THE INTERVAL . 24
C FCT —THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTIo N 25
C SUBPROGRAM USED. 26
C V —THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. 27
C 28
C REMARKS 29
C NONE 30
C 31
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 32
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCTCX ) 33
C MUST BE FURNISHED BY THE USER. 34
C 35
C METHOD 36
C EVALUATION IS DONE BY MEANS OF 32—POINT GAUSS OUADRATURE 37
C FORMULA, WHICH INTEGRATES POLYNOMIALS UP TO) DEGREE 63 38
C EXACTLY. FOR-REFERENCE , SEE 39
C HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS, AND4O
C MATHEMATICAL TABLES,EDITED BY M. ABRAMOWITZ AND I. A. STEGUN
C U.S. GOVERNMENT PRINTING OFFICE, WASHINGTO N D.C. 42
C PAGES 887,e88,919 43
C 44
C 46
C 47

SUBRo UTINE DQG32 ( XL, XU,FCT,Y) 48
C 49
C 50

DC)UBLE PRECISION XL, XU. Y, A , B, C, FCT SI
C 52

Aa.5D0*(XU+XL) 53
8—XU—X L 54
C—. 498631 93092474D0-*B 55
Y—.35093050047350D—2*(FCT(A+C)+FCT(A—C) 56
C. 492805 75577263D0*B 57
YY+ .8 I37 1 97365452D—2*(FCT( A4C)+FCT(A—C)) 58
C— .482381 12779375D0*B
V—V’. 12696032654621D—I*(FCT(A+C)+FCT(A—C)) 60
C— .46745303796886D0*B
Y—Y+.171369314565 1 0D—I*(FCT(A .C)+FCTCA—C)) 62
C— .4481 60577E8302D0*B • 63
Y Y + .214 I79490 11113D— I*( FCT (A +C)+FCT(A— C)) 64
C .  42468380686628D0*B 65
Y~Y+.2549902963II88D—I*(FCT(A+C)+FCTCA—C)) 66
Ca.39724189798397D0*B 67
YY + .29342046739267D— I*(FCT(A4C)+FCT( A—C)) 68
C— .366091059. 7014D0*B 69
Y—Y+.3291 III I388I80D—I*(FCTO A+C)+FCT(A—C)) 70
C—. 33)522 133465 IODO*B 71
Y—Y+.36172897054424D—I*(FCTCA+C)+FCT(A—C)) 72
C~.29.385787862038D0*B 73
Y Y+.39096947893535O-I*(FCT(A+C)+FCT(A.C)) 74
C— .25344995 4466 1 IDO*8 75
YY+ .416559621134730—I*(FCT(A-I.C).FCT(A—C)) 76
C—. 2106 756380653100*8 77
Y.Y+.43826046502201D—I*(FCT(A C)+FCT(A—C)) 78
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-. C..16593430I14I0600*B

Y—Y+ .4558693934788I0.. I*(FCT(AsC)4.FCT(A~C)) 80
C— .1196436$1I2606 00.B 81
Y—Y + .4o922 I9c54o4o2D~ l*(pCT(A+c,.~~T( A_ c))  82
C .72235980791390—i*9 83
Y—Y..478I9360039637D-. I*(FCT(A+C),FCT(A~C)) 84
C— .241538328439690—l*g 85
YsB*(Y+ .48270044257363D_I* (FCT (A+C)+FCT (A_C))) 86RETURN 87END 88
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